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An Investigation is made Into the stability of four

types of two-dimensiorAl free surface flows of an ideal fluid

when subjected to small perturbations.

For the case of a bounded hollow vortex flow only

neutrally stable perturbations are found5 and the propagation

of these perturbations is compared to the propagation of gravity

waves in water. The impinging of a Jet upon a plate of finite

width is also found to be a stable configuration. A series of

orifice flows is investigated, all of whose perturbaLlons are

found to be stable with the ex-e, tion of an isolated unstable

perturbation in the case or one member of the series, namely

the !low thrugh a Jorda iouthpiece. Finally the existence of

unst-able porturba'!ons is indicated in the case of equal and
oppozite imrpir•ging jsts.

Atc ki 12:w le~l LA':

The authjrs w13h to ex;3rýŽzr their a .-reciation for

tho u ~ r~ t. c. :Utxvun- for z:aniy valu~ribleý curcrt~nt Laid

s.-,1!xe t1,n:. ,ratf i .t .w• l --dgn t iz :-rlc to rs-. !larlon

iorritt f)r the t.v:!nr,,_ ; :i... .2t,4n.r A .ri Isn for the



35ýPOz7/2 Ui

Table of Contents

Page

I. Introduction .. * * . . . * . . . . * , . 1

U•. ,esume of Basic Theory 2 . . . . . . . . . 2

Il. olow Vortex 3 runded by Cy indrlica Ic alls . . . 13

IV. Generazl!v-d Orirfice Flows . . . . . , , . * , 2

V. Equal and up~osite Jets . . . • . . . . • . * 37
VI. Jet I:;IngIng on a Fat te i,•ite,.* .

Vii' Concl•t!ng heemz.'ks a • a a • a a a • a a a a 62

rIgures a a a a a a a • • a • a a . 0 a a a a $ a a C 6

Agyen•dix ? . . •~ , . . * * • • a *• .• . . ., . . 93 7

A;, enIx C0 15

:'hy a A a a 136



W7onr-35807 1

ON THE STABILITY OF SOME FLOWS OF AN

IDEAL FLUID WITU FREE SURFACES 1

By

.7. F. Vox 2 -and G. W. Morgan 3 (Brown University)

L Introduc tion

Steady state plane flows of an incompressible invisold

fluid with free surfaces were originally sttdied by Helmholt3

(2 f and Kirchoff (31, and have since been thoroughly reported

In the literature. Their work was an attempt to improve the

classical solutionii of flow around sharp corners which are

physically unacceptable because they give rise to infinite

velocities at the corners. Helmholts and Kirchoff reasoned that

as the velocity becomes largo, the pressure in the fluid deft

creases to the value at which the fluid goes over into the

vapor state. This gives rise to a so called cavitated region-

bounded by a "free surface" over which the pressure is assumed

to be maintained constant and uniform.

One also deals with steady free surface flows in the

case of jets flow.ing in an ambient constant pressure atmosphere.

le The results presented in this report were obtained in the
courie of rosearch conducted under contract 1l7onr-35807
ernsorod by the 4eehanies Branch, Offlce of Naval Resonrch.

• e. snrch Assiciatr, Graluato Division of Ap•pi4e! i-ith-..-nics.

As 3t.'• r-int Prn r, :•. , -o!r Gtiivo Dhis I, )n ~ A~h P - IA .I t hr M- tn

in. to, rv'rah n* o.
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Several examples of such problems are treated by Hilne-Thompson

(4].

Very little work has been done in the past concerning

time dependent flovs with free surfaces. Lord Kelvin (51 dis-

cussed the vibrations of a hollow columnar vortex flow. Some

unsteady free surface flows under the influence of external

forces, such as gravity waves in water are discussed in Lamb

(6] and the investigation there is extended to include the

effects of surface tension and viscosity.

Roceatly Ablow and Hayes (1[ developed a theory of

the 3a.n1.l perturbations of the two-dinenslonal flow of a per-

fect fluid in the prersence of a free surface without external

forces. They then used their theory to study two specific

problems, namely the flow around a hollow vortex and the flow

through a Borda mouthpiece.

T'h.o pre it nvestigotlon will, concern itself with an

exten~ton nf tho wvork -Af Ablow anid .iLyc's (I] to some free sure

face rbv.s3 of Jets as w'rll as to a number of engoral izctIons

of pr'gblhma tr.atni in ll, Our prima.-y roncern will be to ob-

tain infor:tcn cc-rce.nlng. thiu statl!ity -)f rHusQ flows.

t-i h-lc :. unr,ý:iner th"- i•Ad in thi

r-; :'rt illI . n li•-um•:i ta rcta! I in: the w-rk nf A ai•4. and

-F!: .{ . r th.. •kc cf •onvez~c:-c. Xosw.ovir, :, tbr±'f %mit-
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A. pja•.po.

We shall be dealing with perturbations of steady state

flows which do not fill the entire plane, They can be conve-

niently divided into three categories: (1) flows which are

cavitated due to the feet that there is a minimum pressure the

fluid can sustain; (2) jet type flows; (3) flows which are

a combination of (1) a" (2). In all cases there exist in the

steady flow free surfaces along which the pressure remains

constanit and unlform.

The fluid is assumod homogeneous, Incompressible and

inviscid. Both the steady and perturbed states are assumed to

be irrotational and two-dimtnsional.

A.l quantities are written in non-dimensonal form

through the z:;e of a cha acteriztic tength, rressure and veloc-

ity In sAch a m:nawxer as to make the steady state velocity along

the trce surface of unit magntt'de.

Under the uazuzptions msade the :lows must satisfy

%rrvralli's eqzatlon In the form

where P I4 thi presn" re,• ' tht• nsity, q the vv'ci:Lty. T the

wv-'ltwty vpltential and C(t) is a f'zn-n-. -rine tne. The

dot-V ! b22.es witrtiaI Li C,.:reott..: with r.irrct tec tPo•,

J ~~~~ ~ ~ tnl fJ'$1s ¼''iy'

(tI.2
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where v = u - iv and u and v are the cartesian velocity compo-

nents in the z = x + iy plane.

The basic steady flow satisfies the steady form of

(2.1)

Po + pq 0= constant (2.3)

whore the use of a tero subscript denotes the basic steady

flow. Since
df

V10 t and qo , Wo01

we can write (2.3 as

O+ Pwo We constant

where the bar indicates the opFratbon of takin• the cotflex

conjugate.

.. e hail now give the stew-y state bnýIc flow a -mall

pet turh•tt :n in erzs 'A :mj. is-•, re1 rr tor c in the "½rm

*(z,t) k ez,t)

"" I(tw•.t w z, 4 Lw 
1

z;

•:-'•'•* " d "• " • '€: '.••,.. A U
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relations will be linearited by neglecting terms of order 2

and higher. Hence all perturbations are small perturbations

in that they are correct only to Pirst order in e. It is con-

venient to perturb the independent variable zo, although the

lmerturb.'tlns in f, w and p are given in terms of the fixed

-point zo.

The perturbations given above are not independent

since we can derive the following relations from (2.1) and

(2.2)
2 I

We 2Z + w - fl0  (2.4)
0 6

P1 + pRt [w r0 + wo z] = 0

where the prime indicates partial differentiation with respect

to fo" Thus, we see thtt only two of the four .erturb- -)n,

are Independent.

We note that, when properly chosen, two different

sets of pnrturbations, e.g., (z 3 tf3) a•nd•t + ,fj + ) may rrepre•ent

the same r h-- I.rturb Itnro. Their dtffree, namely

ZI - f. c " will lrave the "low unch-ý3nged nd

the vrtuztat.- .. (z 1 ,f 1 ) will. be ct'iled an ln-rl-mt perturba-

ton

fee dline a stitl.rnry r:.vturbc:tion (z2,%) to be one

In which ;ny ilven khyicz.cl Aýerturhatbon is evalulated -It a

fixed P,•.it w00 of the ba;ic flcv, i.e,, one _'or which the ptace

variz-"le is rt r-.crturbvd ( # 0)z 4e can now find, corres-

Frt2±n to t .... n aoer tb.1t ( f( ) a unique sttiti1f=.ry
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form Wy superposing on (zl:fI) the invariant perturbation

Using (2,4) and (?.5) we can derive the following rela-

tions between the ztationery perturbations f2, w2 and P2

w2 t V- f' (2.6)
2 0 2

pp'.-p- (w0-V f + 2 ) (2.7)
C.o02 2

In this formulation there is only one independent per-

turbation quantlty, say f2, restricted only by the condition

that it be admissible under the boundary conditions of the

problem.

In subz._.vuent ',')rk, f.'-,r the sake of compactness, we

shall not change the name of a function after a chaage of inde-

rendent variable, e.g., we shall write

f(zo 0 f (WO(z )] = f(wo).

Do Pre-e :.,trfrue ý;,xrLfttil

There are two coniitions •tt• st '1 "ld c'u the "r'e

surf -ice. First,, th. rrpri s-urface rrr_-hure r,-:minv cnzft-;nt,

-a r -t .rtgrnally rin the frn,• suar:'ace >•n;vins

on the free .ur.a. o :n th, ýertur'i tate. - 1) wV aile

'tha! ye can s.tzvthe, flr~t cofrllAt:i,% by -hnIngtha t

Tv rI * W :.)

whc:re we have •s,Ž. the rnlation betweun f,, d its t"atit nary
ecrA.
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f2 = 1 f wo Zi

The second condition can be shown to imply that

Im [f2 N (w0 S)' *(wIJ = O. (2.9)

We can satisfy (2.8) identically if we set the expres-

sion in the bracket equal to iX(ze2 t), where the function X is

real on the free surface and otherwise arbitrary. Solving

for z we have

zl fix - D f 2 ]} (2.10)

where the operator Df j r i + ~~aJ, Now substituting (orgo B

21 from (2.10) in (2.9) we find, after some reduction, that the

free surface boundary condition is

I ID [f 2 - iD rC2) 1- 2fj 0 (2.11)

where w v /Wo
0 0

Adiptiru• the notation
S

H = L (t2) f . [t 2 -[ f 1D f " (2.12)

(2.1!) becozo-s -wth wo as the inlepenlent varlile

l(v ) = • ) on v w = V . (?.13)
- 00

The adtttional bouacdaery condiitions lepend mainly upin

Lo jarticular flow cooslerled, •e shall hero discuss 3cum

bowv-a.-y conditions that occur In r¶sst of the prtbler_ to be
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investlgated.

In general, from a physical point of view, we shall

demand that all perturbation quantities be regular at any regu-

lar, finite interior point of the basic flow. The term regular

ax applied to a function implies that the function is develop-

able in a Taylor series, while by a regular point of the basic

flow we mean a point at which the basic flow potential is

regular.

Host of the flows we shall consider originate at in-

finityt i.e., have a source point at inflnity. Since we do

not wish the perturbations to alter the fMndamental nature of

the basic flow, ue require tCat the pressure and velocity per-

turbations vanish at the source point.

(1) At upstream infinity (source point),

(a) the perturbation of velocity vanizi-es

l1m w, r 0zo--* •

(b) the pertarb:, lon of preusure vnt•ios. From

(2.7) this Implies

lia Rat (Iv fl 2 =3 0

uzIr4 conliticn I(a), 1(b) rejuces to

(2) Aio aVy fixtd wall in the flow the perturbed flow
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can have no component normal to the wall. This condition is

satist'ied if

n is real on a fixed wall.
Wo

(3) If In the basic flow the free surface originates

at a sharp edze, it must continue to originate there in the

perturbed i01ow if no Infinlte velocities are to necur. We

Ahoose z such that a point z. on the basic flow free surface

goes into a ,,rint z on the perturbed free surface. Our bound-

ary condition demands that the basic flow free surface and

perturbed free surface coincide at a sharp edge where the free

surface first originited. We can satisfy our boundary condi-

tion if z 0 there which becomes from (2.10)

0z- c-. { iX - D (f2 1}

(4) In subsequent work we shrill consider a flow in-

volvtrig a hillow vortex. This problem rf2-itIres some c'Žeciul

cons idera t I -_ns.

(a) At1 = 0

whuro t( ) inac-t.• the change in a -quafnt•tv after ,rAng

arwAJ~d a clci cnt , i ,.nclr-ting the vorteýx. This csýndtlon

then ensures thnt th,- rertutrbJ tr'-o 5trq:L-1 Inc? rQnkins cinzed.

A f2 = I t;(t)

tfficro N() I: * r..al aluese z .....
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This ensures that the circula.tion about any closed

contour moving with the fluid remains constant, a consequence

of Kelvin's theorem (see [6, p. 361).

F. .Xzzory Constderations

In cases wihere the basic f1.o has it velncity distribu-

tion which is a syr,,rotric function of zo (say-itric basic flow)

certain -implifications can be made in the problom. In func-

tional notation a zruaotric function F(v) satisfies

F5 (v) = Fs(;)

while an anti-symm.-tric fwrtion satisfies

?(V) F -

We can combine both rulations in a conv.nic'at notntion

5 --1'-
Fa(V) = + A,;)

whero the & and - signs go with the sxyrnrctric and anti-symoet-

ric v-rts rvrY-.t tvCly.

Certalin op rnt•Insz prkra-.d cm v rn or .tnt!-

'.m t:..r.c : ;r" prtics. Ift c fn b wn

focr oX 1 who-,3 of I £•cjrc-ntld t n rnd Ir,%-

or• tri -. - . - .. r i., tiir. : ,%tm t r:. or nmt I-

d- ry r, 'if. 16n t% r x11nc1A.A w
.-"' ( ) - ..
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U(v) U7

then

pa(U) FR (u)

(Ite., tho function retains its syxrctry or anti-sym-etry

propurtles In the u planv)s

Thei Imt-ortant consequence of these considorations is

cmboAicd in a theoorem which will be stated here without proof,

(for prr7of soe (1, pp 26 et sceq.])

oy-,"-ietry Th-~orom:- If th.ý! basic flow is sywmmutric, any

r~rt~irbittrin can be rcprcscntod as the sun of a syrn-iutric and

a~n nuiti-symmzetric porturb-tion eAch of which sa&tisfies all

Lounik.ry cmiltiotns and soi is an ar1.l1isiblo pe~rtu~rbfttion in

Itz own right,

At this pint in the r~c. v uI pr n t of' thc. thi-ory, the

cnly r -strictlA-zi pltcc':J on thi ý:tirzt-n in the- p-on'tin1

is th'.1 it -L2A vs6A:1 fY -1 pLT1 h.'ilU con-ditions.

~ ~h~:i nttv-k the r-b' I.y ,issý-mnr ~ti~~ of thu2 form

r ( 2 . 1 4)

f -;~;~: ': r tiv. e m .a! -,f h -irvt I nr

n :, f. IC C- v -- X n1 thA

N, -- I ~ ?~~: Cr -

*~~ ~ 7- -;*A~ '
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of the real part of all admissible X since this will indicate

the stability of the flow. We shall have

-unstable Ferturbations for Rt. {)> 0

neutrally stable perturbations for Rt. - 0

st !'-l pertuzrbations for Rt 0.

It might seem sufficient to assume f2 in the "orm

2 = G(W0)et (2. 14a)

since if X and K were both eigenvilues, both would be found

a&ng the admissible values of %& The form (2.14) has been

chosen because it is found that the elementary form (2.14a)

is not capable of satisfying all the boundary conditions,

whereas thM form (2.14) can represent an admissible perturba-

tions

Su!.stitutiin of the form for f 2 from (2.11) in our

previout Pxpr,,q*-i=.n (2.12) for the -)?-(rator H 4ives

H L xt G I TG, t.

w:.,re w•

-• (G,(IT••) J 4- ,G(Sy ] . (2. 17)

I *'l c -ve nt th e t 1 c VI w 1 -s :j 'r I r-, e a t-, le -
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f= 2+ 4
where

f =G eft •'4 (2.18)t2 - 1 ÷G

and we can show that

G a(w) (2.19)

With (2.19) we can eliminate G2 from our free surface

boundary condition (2.17) which then becomes

S S
LX (i4 (w,)J I L,~ (Gt (_I)] (2.20)1 1w.

This condition Is to be applied on the free surface

wWo I or w0 = ( W-)" ;Je can use analytic continuation,
V0

however, and demand that it hold over the entire wo plane.

The remainder of this report will be devoted to solv-

Ing thp rerturbntlon equatlon (either (2.17) or (2.20)) for

several different ty;es of rroblhrms.

In the remainder of the work the s'ibscr'-)t zero used

in dtn#ctnAg th9 basic flow velriclty v0o will be dropprl.

The Ct.rzt !ro!,rm to be inveztigated ir a gnenrallza-

tin ,f onr trtyatie' In (iJ3

The baIsi' flow is -- cycLic Irrotati1-nal +Ytion with

r~n V-' a :; 111 CirrH.,.

tfur visi ant I r thýw insI u, 1-,I a !- neCvrtrtc r-I~~ h lzn
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vortex forming a constant prtssure surface. 4ie shall denote

the radius of the un•disturbed free surface by a and of the

fixed wails by b, or in dirensionless form by I and b/a = I/*

(see Figure 1).

We can readily find the form of the basic flow poten-

tial in the hodogrash plane (see Figure 2) as (see P+ Pr 316

e t seq. ])
.V = ilog w (3t1)

and "O find

twi' =0 (3.2)

where we recall that the prime dc-.notes O/Of%

3. Form orf the arbation Plot,'fnl

In the hodugraph plane the entire ph ysical flew is

contained In the armnulus bouwded by 1w1 = I and lwl= a = a/b.

rince we exieet the norturbed flow t:; have the same fundamen-

tal nature 4r the basIc floaw, we can aflw sinrularities of

the r ~rturhd flow only at zingular rolnts of the bazic flwV

tt

we ht a-rc as : .h 'r •e wraifr r

-A-

.• r.i N.r
.q_ 4-

-4k
tv, 4 T.
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C. of &he Conditions

We shall now apply the relevant boundary conditions

of Section II to the general form for f 2 , (3.3).

(1) Af 2 = I C(t) where At2 represents the change in f2

after proceeding about a closed contour encircling the origin

and C(t) is a real function of time. This boundary condition

enwares conztanicy of circulation for any contour encircling

the singularity.

The applicition of this boundary condition gives

B2 1 BI

(2) 'all streamilne hounlary condition

Ue shall finist that the surrace wlI = a which is the

map if the lttted wall rcnaln a stre.Aline, 1.¼ that

be rceal on lwI =a.

The *-jrress-in for wvlw iz r.ound :rum (2.6) tQ be

- -w' f = f•

'Ia i.h, the a:. r 1r.:I~O:c •.,t tut. • nz • ftnd

$1• r,, w * N' k'bkw
-- fT * ± Lr r,' " 4

7.Iw a. t r 4 * I s- f r.aII
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Performin. the i.ndicated conjugate operation we have

+ ± rar w~ 14B1 + Z 0 k

r=-C k=-co

- 2
Substituting w = /tiw and equating coefficients of

like powers of w we find

1 1

and hence
B rO

"b "n a n (3.4)

or
b a an -1

(3) Tht •ree suirface bounlary 'z ndition is given by

(2.[7) as

LX[S 1(w)] = tLrt2(w)J on w 1,

which in expanded "rnl is

w AdG . 2 w+ =[--G1 r -w&G--W ... + .T.'.,G + k W 2

-. - 'h.• - ;n,
WW LC2

&la 45 1rn th,. r' 'V zf (h.*1) w,'2 taf n arter zire abi,,braic

rnjn r[u(var, ¶:r• K tWI.t? -r-'At[", Y-

"-rr
-r) tr -w a:: a-~ a

r r-
4~.
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otT a quadrntic equatoion in n which gives rise to an infinite

set of %'sO Say \n wv•hre

Xn = ((n +zVI W')) (3.6)

and

N(n) n

for all integer n.

We can now finI the final forms of G1 (w) and G2 (w)

in the expression (1.3) for an elermentary solution of the per-

turbation potontial f2" Wge find two such elementary solutions.

Correzponding t-

n. = i(n + V'kn))

we have

f2 =2wn annwVne+ + .7)

2n- -n -i(n+VJ(n))t
an.

a.zi correaron.fnl to

%I AI(n -V~IF))

* (, - =3

r~e a- ar! , ar, z-,Ir*
- -l -i(n-V.IV*))t

, - 4+"+; -.. A A A -" + -& .. 4.o , .r ,+ . -- x+. .+ +. l V•

.- , < ;.. ,+ ++. t" A ,t.UPI1 t tt l Z, l _...rV 1* r ..... bt
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found as the sum over all n of such elementary solutions.

D. •LnaL Forms of the Perturbation 4u-,tlitte_

If we write a zolutinn for a general admissible per-

turbaticon as a s=m of elementary solutions of the form (3.7)

and (3.8), after snme re,'uction, we arrive at the relation

t,=A 2ŽZan i(n+ VIN ))t n

n=l

Cx) - _j(n+4 VM~n))t•-.•an Unel
n nn-1 w

(3.9)
-n i(t,- VN )tn

+ a U o

S2"_, i a . eo
n-I n

whur' A.7, Cn awl Ln jr, f-r.Iat'flts n) ho Ietjr':>Inudl by the

inlitilal cond1tL..s o0 thu .ec l fe ;"*.rturbt. : n to b-y. invv.s,.

tlgat,,J,

,i± cart "eta Lt ufch •!>,-rr•:r LrIyctV] ; icflrc frcm th•u

"r tVli p,-tirtt• i i - fS zr. I at tLcr- 1 .r ""•rfk.--. -

w ! ' h:~t n t h-. t :ic :'I )W Er42r. star %' the t-w taly

ty9 V U 4l I'(-n Ve r.,rt ,*.t,, ty W

r r - di
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ann Ci(n+ VNhteinOl

n=1

- ~ V*, iv(I~ [i(n+ VFI) tinO]I
n=1 (3.10)

4f_.n n -[-(n- V'Tht-in9 1
X* rr;. a I)' DIw

value X arell

n I VU77n))

Thu s ).Y is a pure inrigin--,ry and we 'nay conclude flwie-

diately thal the brinic flow 13 neutrally st;1,-blo whon subje~ctedl

to 3=411. pnrttxrbat!,ma.

(?) A'rtvC ch-Lrqctor r~f thc r,uvturbn,,L-ns.

?7h. --r~ig :r v*K'r-'K ty ýjf thie fluid p-zrticleo cn the

bas~ic flwfri-I surt--ce tsunity. In ciuut ton (3.10) wo have

v:itten an.er'sc c tt,- rtrturbaticns of the free. surface

3- -ih srtf N a 'ch;--rturba* I-..1 up to tin -tr)?itrOary f'unvti',n

x~ A31 It. frcr-, thi-s arltainz,' nz-tu that thn pi'-rtur-ba-

t n ~:t 1 C 1-0nV mkt~f --- n t r--'4cnonAS trnve1

I~~~. thny !ag!'t""r-ui A
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(3) A-aalogy with water waves.

The square oC the linear velocity of propagation of

the perturbations along the free surface is seen to be

2•

The wavelenmth y of these perturbat!ons is

(1) 2r
a

Wtirngn• th,-..1,::.ti --, ! r-ori the free st.arface to the walls

Ja$ h we h'•vo
h = Ub- a

or divid-ng, 'hr sigh by a we hi-ve

b- =is. 1. (¾.12)

"- -hal 1 con.tder the sltuztlon where the ratlo h/{

is r:itntaln,'I c:,82ttratt whIle -it the nare tie we Make the

dirr:lo-i•nla:;s do;-th (hOa) very sm-all. Ac h':vO froe (", 12)

aa

wh~cL ",.t, - .- ,- j.f.lj .8: t•'w•s- -*< h/J as

.9 -_ -

v~hŽ°l 2i th'I£d h:
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'a

Sub-stituting In ( we1 ft rInd

C- I

+. a

C2 ' , ttnan rh . (3412)

Buit the ab~ve is the same- as the square of the velocity of

p.-.r~u±aticnri r a rater wave jr. a const':nit gravity fiold if one

repi1-icos g by i/n (see [6 p 367]). Thus we see that the anal-

igy Is e'-n.np~fete In the lit-ting zhse kVa----)O. This is as we

might exp-ct sl~ice Qrx h/a very small the centrifugal frorces

thrz:ýigho.ut the IJ'ufl are appriximately consftant and equal to

I/a, and st~ace they nrnd)-.uc-e thq wavellke disturbances by a

mechanism :znalor-ous to thri sp-ratinla in gravity waveis.

(1.) LItlting caso with b 4x.

Ifi th-, .,rk at vif we let the ra-ilus otl the cylin-

d r I c: -. .;- I b .te ti: I n Tt w:: we' !ri thtwe) ha-v-e r:;*roduced

an -!it-aii the! ruitss lf ir, -ihIela1 the cast, 'f -1 holow

vrtrIti ik i.:2f d tt:tt,71i. i-fA a3 -w mrl

V ~~ -. Isg W*4 n-c S t~is- uinbstaun'Id tI-A) I.:,w voýrtex.

tis c283e the vb:Y? r~~sf t~lst*f
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th6 free surface is analogous to the velocity of propacation

of deep water waves. This result can also be obtained by

litting h-/y-4 mc in (3.12).

(5) Comparison with previous work.

The results of this section have previously been ob-

tained by another method by Lord Kelvin [5), However, Kelvin

treats a'tn.ree-dimensional disturbance of the basic flow. If

one considers the special case in which Kelvin's three-dimen-

sional disturbance bec-omes two-dimensional, the results of [5)

and this section are Identical in all detail.

IV. .gee.jlljed Orifice Fjows

Each of the flows to be considerod in this section

repre.esnts the draintn& of zn infinite reservoir through an

orifice. The sides of thQ orifice are mado ui of two crni-

infinite planes inclined to each ether at an angle of 21/n

radians; where n r 2p, p = 1, 1,, 2 ... (see F.iuro 3). dhen

r = :J th-e con-ficurat±'ua b!comes the 3£rda m-2uthpieco w.hlch has

been treatud in (1]t anl hence this -ectirn is essventilly a

tenurallzatiAon of thnJt pruvlc.,

-4 t La :hc r-h,01cal - i:wpni is mapui- d rt'- a aec-

tr cr thc unit circle ia the h•dodrz[.ph pi-ne iY'-',nied by radii

1f.2'IneI at rn A.le of !±/n radla;5. t) the Pfszltive rral

axis (:,e Pc4rv 4)')

T¶n r_4r thi O*¶1 V~ts r't-%1 re. ktl Lar~4
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railt are streamlines we irrage the sector to cover the entire

unit circle. The potentials of the basic flows for all n are

similar. Each may be thought of as being due to the presence

of a s.ource at the oriiin and sinks on the unit circle at the

nth roots of u-nity. The Sum of the strengths of the n sinks

i- twice the strength of the source. The potential for all'

values ot n becomes
n/'2

f0(w) rlog .(.1)(it 1 q a~w )

In tcras AC a ne-n ;'eria;,e r w n

( -. 2 log._ (4,2)
(- I)

provdIes a sln-:ln repr,-•entatisn for the potr.ntial of" all the

flows consilJercd here. We n-ay now evaluate

Al - t

-),tal the

b - l)Y r t,

Joz.l ..~ lr. t-. . ., t-•u;.rzo go;,'r ring thM JT-r

twt5at .nn pi~t.&,:t IrA• .n.... 1.F "-? t~hat It rn=;y s-utl fV"' the wail

ltr,-.-¶ll ne 1- •....a... -.- --r:mt~A~x c •i • r_. •-Ir~ e c n;•!•n

All .the trtansry ..n.tnswl e•;t!en, tt ap!Ied ' )tnl~ theslu

* mI ~ tbrne cro.t[irba• -r St ~ 6~.~n*- ~ f
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(1) Jall strearlite boundary condition

The wall streamline "boundary condition demands that

the perturbation velocitd have no component normal to the

walls. This condition will be satisfted if

is real on thte w•all.W

We have 2een that In the hodograph plane the entire physical

flow is contained In a sector of the unit circle of 2%/n

ralIans. Let us transform to a now variable I = iwn/2V In

the rl plane t0e flow is contained in the upper half o. the

Unit zlrcle jq< ! fknd the wails have gone into the rtal axis

(c•, ?i.:ure 9, The bwmndary conditlon now ty.)comes

I1- real on j real.

W.

From, (2.6) W, ''r r

- - W w 2w 1W

h'v.ce
2

- a -_ r,, 13 -,;-al on 9 roal.
w t f I) a

"-. !¶r,"T r4*+-r. .. hQ+ r,.mt a•s. Chis 1-7'1,len that t, 12 a

ny--r: n!L'!'t! :I of h,

At . r-'-tt y ,' ,. 'j * tr, -
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have an isolated singularity at the origin. !Ience ft2 can be

ropres.ented by a Laurent series in WiqJ < 1. Integrating term-

wise, an operation which preserves symmetry, gives

f I oe q + F+(q) - R < arg n• (4.0)

wh-ro FN) is an analytic function of q, i.e., has a Laurent

s+rits. With the choice of argument above f2 is a sy-retric

function of r. kie note that c must be a real function of time

In order that f2 may sitisfy the condltion 1+(b) of section It,

namely const.xncy of c1rciulatton.

The basic flows for all n have symmetric velocity

distributions. Hence the yorturbatilons In the hodoraph plane

+r, after thlt Ly;-n-cvry prCscrving transformation C = wn in

thu C planv, can tie deccmz scd into symretrtc and antl-symmet-

ric C f,,r-uflt.t5, £J;kros-ed it. the n plano•, ("q = 1/ 2 ) ,.the

c ptnt ,±yr-uctry rfetatinn

t4f ) (7)bvcc:-+ -

2
bv"W "'---Is

a S, flt V -:;tv" ! ,, ur* t *b• N-y+je'rw , tiA.tn' antd ay 2¶s-tr!"c.ipt

.... .. ....... ht x. t F t Wv ; ra'i dot;r-riner that
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Substituting this relation into (4.5) shows that

fa (n) ±+ f (" q). (4.6)f22

Thus f2, represents a C plane zymetric or anti-syrsetric per-

turbatinn dejandtng upon whether it is an even or an odd fune-

tton of q respe:ctively.

The term

2c log c a log C + icx

is sysnetric Pxceot for the anti-sywetric constant ict which

can be absorbud in fa.
2

C behave5- ihe vj 2 Hence a8: even functi.in of r with

a Laurent series development (a series containing only even

powers of q) becomes a Laurent series in C containing all

powers of ". On the other hand an odd function of q having a

Laurent series (a series containing in]y odd powers of i) looks

Like (1/" multiplied by a Laurent serles containing all powers

of ( whxn expressed iii the l plane. Thus w:e can write

r F
where 2 = c2 >g r

a a 1u /2 t

"�A er . re anniytic Vz.ztLns or •, i, , ave LasurWnt

-C t+t, t,,.I e ,+,ec of to bo+t
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xt KGe ('+.8)

$yvrttry ot, the basic flow relates G-, to G The syrn-netry

rohatflýn in the hodograph plane (see (2.19)), aftor the symme-

try pr*.tzn.rving trarzs.ýhrratttiun C wn, bseumes

Ga +C Ga () (4.9)

Csnsist--nt with equations (4.7 . 4+.9) we can represent the

syrair,ýtric arO aniti-symnietric co'nponr-nts of GS and GC in the form

G a log + g (C

G 2 logC+ gzQ)

G a (i* 0

wh#ý anJ 9 are analyt~c In I~ .an4 a is a COrn-

rl-- --n~tant. It can eazil1y lie ver;fied tkjf the fe.rms ~ab-

st~eiIn&d) satislryvyatri([7-

r- 'W (n W

V I~fG:(w or) ww r

--flAJ daeritalt'y X t - be Ith" rtir'Ert~r +.irer-ttet



operat'ir. Mcau using, the !rynmetry relation (4.,9) to eliminate

C? we 3*tainSS

LX rGa (C)) LX~ [G (.1) )
1 1c

Th~e rlifferential operator L~ in the Cplane i3 found

to be

LcrG(o1-n r$)i n~c + 1)-

+ G + 2Yc +(4'.11)

Junce thq sy-metric and anti-syunn-rrtc eoarponents

skati-Jfy the Lruayconditions inrvipnndiently, we can z-ubsti-

tuto thQý fz)rms tor G5and Gafrom (4.,10) .intu the above and

fin! the r'l-,1Ltng .C-ncti-.nal r'.latiofn!z

-' 4i

h (rý) h (~£-....)

h ' Xh 2 (4..1b

½iv;: k s ct T~h ?h In -tind, Ve c an by me an 3 oi #ua -

t!' (L Is) ltermine that in It! < 1 ha(r) bcw -ikow
r l v1"ttVlcltA y &rj- ainalyt"! r:fcifl se -f r wil

behft2 e tke %n- vvtI t> f trIn o f C.For 'mrnvvnte.,zce we

May r2;*,c-raetlt! Ue rŽ-XV f ~r.lflsin tho f -itouwl14-ig m-mmne r
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ha (a) -(. 1a)c ;km.C) 1)2j

M k
h(C) 3 - 2a -.Z-L+ >2_7 bk ( c4kb)c k=- k4.1%)

where the constants ak and bk are unknown,

ihes•t forms have the tahavior demanded above and in

adiJtti~n satisfy (t+#12a) and (4.12b) termwise. Our aim is to

fini tunctions gl(C) satitfying the relation (t,13) with

ha(C) h-vtng the forms given in (1.1i1+a) and (4.14s'b). To do

this, we ro,?ard (4..13) as an inhrmogeneous differential equa-

tLion fcr gi(r. We note that the inrhozop::neous term h0(0) is

known in form tnly mnd he'ice the soluti-ns ga(r) will retain

some trhttrarwosz -'hich, for a given .roblcn, rught to be de-

termineJ by the irnitial cflnditLonz,.

Knowing ga(c), G1, and G.. can then be found from

(4.l§), thus thteriini.ing f2 ,tnd t!l other pertturhationl quan-

t tjis,

T h: r•"r'ti l. Tc'h.? ¶ut bn rhcnd o.t0ju-

*It S*-''1t A iS• [ Y" the rt •:j,*'. . ....... t iiy t-y-lJ • 9l -r+c', V I i
.. +-, ... ' •~aS r• d rlvc-A in

A:'+• :×A, I;,- !, .rs-+y r",- as :¾.Vr45

(Ur h • -l'v e+ - the orlr"tio ( 1 ) - .

7h. fr'V's.riac.,i %hall er -f-..M~t' r~~aI t
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gs(-l) = a, g (-.) = 0.

(2) Upstream infinity (t. = 0).

(a) The perturbation velocity w2 goes to zero.

nn: 1 g9 a are regular at : 0

n 2,t4,8, ... g5 and r g/2 a are regular at C = 0

(b) The prel'sure perturbation p, shall be zero.

• gs and 1-/2 ga are regular at 0.

(3) DownStream Infinity (C = 1),

lo disturbance:s originating at downstream infinity

sball be propagated upstream in the jet

(C - IV"k gS(1) and (C - g)" ga( 1 ) exist.

D. 2 f the PJ rturbatton Eauation

The deb:elopn.pnt of the antt-symetrle and symmetric

sl5utl-,ns of the perturawt&n e'uatisn Cý .13) is carried out

in ApuMix A, part !I. -4o shtnll hv-.reý use the results of that

n I: 'trlc Sr l thecfl nt-sy:tr'c T)uti of

ttv, ".,:tirthat hn e vr~tirL v-1-- about 0 - can be written as

a tltti -u!ar, t"Ierrrti.

a(1 E v(c) .a r (.S-, • .- v'" r. ri5
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The integer R used to describe a solution ga is a
R

num!.r chosen so that Ea Is the first nnn-iero E appearing

in the n-lition. Adwi:5ihle valurs of R will be deterntned

by the application of the remaining boundary conditions. K

14nd K(2) are two linearly independent SolutLions of the homo-

geneous equation develcped about tho pnint C - O. The p•rtic-

ular integral Is repre,,sented by the terms

r=O

where tne genrbrl term

r N~r

is a iparticular integral of the diff'erential equation when the

inhr.ngeneous side -)f t¼e e:uation ha(C), co)nAsts of the

single term

1 N2 iir i

(sM E a ire 2rbltrary nc~nstants.

.. :.:l~t (,. 15) in v A .' ir . th, nearcst sin-

gil-Lr ;iutn i, '-.., ''th!,tn the uit t-rcl,. [rice boumeary

<,# ''ns vtl1 al~ t* I"' r I "- .! t, .Vi t" e v lltv i ,-ti,

?nit o rtC4l•.ttC 2 o.t;rri to tri

r f---., "• "t, sf-l: -.n

- :; • •.;.i :... A ;:.' f :rp.. F , .' rev'; -.. r't t't~al r ir1¶':,,r;:!. m.y .h:t]n
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be fnund. This method must be ccntinued until we obtain solu-

tions near all points at which boiudary conditions must be

a'nl ted.

(2) Synmetric solutions.

The general form of the synmetric solution can be

written in a manier similar to that used in writing the anti-

sym:netric Zolftlons Thus

g Az KM) + BS K(2) + Ks + W'£ S
R =AR a lr=O r lt(+r

where the additional term Ks is the solution for a particular

integral ot the differential equation upon substitution for

the inh-,mogeneous pa-t of the diflforential equation only. the

torm -2!a appearing in expression (N. .1b) for h5CC).

E. A•a'utt. t ion to the So • 2_9.

The details of applying the boundary conditions of

section C to the zolut1ons of the perturbation ouuation aro

carrlod out in Appendix A, part I1I. The rcsultz of thio work

arc, Colt~Cct,- bvlov.

(1.) tt.y!e'• etrvc p•?'ubn"s

"h a .iu f t:t' l'ix - •7 -""ch are fl-und to be ad-

i :i i "v- ,c & -r -.,- :C .,i:-nd t1at C/g or C-I/2g

h rA ir at ln-cawit in2.

• - g: r -i1a 3- r 0 w!a nave it '- l, .ma hR3t toe

th V W
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demand that both thc velocity and pressure perturbations van-

ish at upstream infinity (boundary conditions 2(a) and 2(b)),

we see that the value R = 0 is not admissible even for n 1.

With these values of R we can meet all boundary con-

diti'mns by satisfy1g• no more than three linear homogeneous

equations in the unknown coefficients AR, BA and E4, and by

restricting the valuos of X so that

at { X}Iý2e-2(R +r)*

(2) Syruetric perturbations.

Analogously In the syrietric case, demanding that

g be regular at C 0 gives the allowable values of R as

R 0, 1, 2, 3, fi ,l, _while dema1dnng that 1 gs be regular

givcs R = 1, 2, 3, e.. * As before the prertiure condition at

upstream infinity eliminates R = 0. This botundary condition

also determines that a = O0

Now, to meet all boundary conditions we must satisfy

no more than three linear homogeneous equntlons in the ,Ln-

k=,s ½, Lcj and Es. In this caSe the restrictirn on X be-

Ftt{\ •1 -20 + r).

r. flLiy_92tfhe fAlsi Flow

(1) •'T:•h..Ity ts anti-,3yzxrtricp.ruý,lo 3

elvenn'o f- thit the a!;r;lieifr n Vtf Usur brur.lary

S d5J tinds thrt we satl:qfy L,1 Lroe 11%itdr

v~~~u~~i¶:~ ;.A~ 1:g' uirwrsV~nqraj ve are
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assured of a non-trivial solution if we have more unknowns

than equations. Thus we car. take as a solution involving four

unknown constants

a a (1) a (2) OD

r=O

'With this solution our restriction on X

RJ fJ < 2 - 2(R + r)

with R r I, 2, 3, ... , Implies that

X -< 2

which would indicate stable flow,

There exist any numter of other possible solutions

4 containing one or more terms Ea a In addItion to E a .PRa r K;I•r nadtint 0

Any of these will make Ri {\} even smaller than -2.

There is one special case for which a grenter Rt {X)

may perhaps occur, If it Is possible to satisfy non-trivially

Mhe three hlozm);encous el4 uations with three Uninown constafts,

then the so iutijn

0. _ &a V- + Lav :- .a •.

is in ~ 17i an Wptves

. .... ... . ..t -. r stable jertur-

S.. .... . .. .r.- -- ... .. • •- r• • ., . .. ... -. ' -. ýn A .t f I. Le
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There is another possible type of solution ga which

satizfies all bounda.-y conditions. This solution consists of

the complementary solutions, i.e., 8 - 0 0for all r, and there-

fore Lx= L Ce(g 1 0. In this case the values of X are

restricted to

--(2Nq + 1)_ ýq(2N + 1) N = O, 1, 2, to
n = 1, 2, 4, 8, of#

whiich gives RJ 1)L <0 for all n and N except N = 0, n = 1

for which

(2) 2tabil!ty to sy=netric perturbations.

In the case o' rym:petric jerturbations we have to

sdtisfy three lne Iar himogerleous relations in the unknowns

, and r" 'Thus, It we take as a soiution

sh H rs

rR h0 r Or

our rnstrtztn'- Xn

I - 2(h r r)

-va

.. Eec;e1 of the

" !2)
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we flnd

which still indicates a stable flow,

As in the antl-symnetric case there exists the possi-

bility of satisfying all boundary conditions with the com-

plementary solutions alone provided

2N- 21 2I7 N = I, 2, 3,

n =1, 2, 1, 8, s.. .

This gfivcs Rt.{} <0 for all possible choices of n and N.

UsuaLly in the sol Atlon of an eigenvalue problem in

an infinite domain one expects to find a one-dimensional con-

tinuum of eigenvaluos % and the set of eigenfunctions corres-

ponding to these eigenvalues. The results of the presen);

analysis have only given upper bounds on the nt ft } and Lence

X ha.- only bet-n restri-ted to lie In a rnrtirin of the co-r[,plx

;tth K'eC excr ' U n, nnflvy thrjt n0' th.- torda tnuth-

'±-te (n -), th,, arIl•'-ccl Of h,-, ",un.l-y condltlr to

tt. rh- tl n " r.t th r::er% ati.-n hr4u-uttcn f i s Szvwn th;:t thern

exist "_• nr)n-trivii a.-14- i.e .--rturhatio)ns wIth .I {\4 >r.

n tu ýa

,~~~~~~~~ e, r0 a~2 hn3t'cwj
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appear to be an admissible perturbation, composed of only the

complementary 3olution of the perturbation equation, with

Rt {X) > 0. Wie note that this umstable perturbation occurs

for only one isolated value of permissible X namely X real

and X - 1 + V7. Since we have not been able to determine

a one-dimensional continuui of elgenvalues and corresponding

edgnefunctions, i.e., elementary solutions, it is not quite

evident whether this unstable perturbation would always appear

as a component of any general perturbation thus rendering the

Borda mo'tthplece Zlow generally unstab~e.

V. EjrJj. jjd uDojite Jets

In this section we shall consider the flow made up

of' two equal and oppozite two-dimens8:nal jets impinging upon

each other (see Figure 7).

A. ~ic Flo

Tho complrx potentbil of the Masic flow may be found

frte an Inve-t)qation rf the nature of the flow in the hodo-

grarh 11-e (see Figure 8). The flow may b4, tiought of as

ariain4 frs, 5ht i4s-n e . 'f two suro_ I a4t t-u

sinks at w 1, all -f thi nat :trc,tnth. With this in mird

we cal, writ- e • tntiai Ti

0 ~ V 15

rir n':t: 3 sha c a t raraCo-!nin
r.• & f n•,'.,• /
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In terms of the new variable

f = log . (•.2)0 +

Then

1- )(C 4, 1)

2 (5.3)
w' '(, = ._-.2(4 +

(r- )( + 1)

BO t~LoA j .2_l f Pe~t~r!to. Quln

Tho di•ferential equation governina the perturbation

poternttal will be derived by applying symmetry considerations

and the bounJary condition on the free surfaces All other

boundary conditions will then be applied to the solutions of

the perturbation differential equationo

(1) Symietry and analyticity consilduratlons.

In the basic flow, as repr,-senftod in th, hodograph

plan4e, the ima-inary axis is an ai•i of symnetry. We zhall

first decomý-ose the velocity perturbations Into compononts

which art 3ym ctrtc ani anti-sym :.:trtc wi1th re poct to the

im.4hinrry axis* :reI mntht.c'illy 'at a -'-,nnJiry ccondl-

tlnf, ye 'vrvo -Ather

cn:•, -- P ~ ~-r ~-. '~i~!n~vyw axtz; fnr the zy=,twtr1C

z, g In ra- y :.1.ry wi atXK 1- r thc

ant 1-:;Y= " ri.-
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respect to the form of the perturbation potential. For con-

venience we shIll. define a new variable v by the transformation

"Since v w" we have also

v=11/2.

From equation (2.6) we have

! = wIfwW 2

whicn bocomes in terms of v

2w a

Upon substitution we rind

SP = (v' + u ,v 2  - I)
__2 (¶j.4)w 4~v

with trarisfrormed hunlary conditizns

case (a) - real on v r'oal

cas-e (b) .Spure 1:.irgin'-ry on v rttal.

Z..,ce r in (. .), thn :effoi~ent of f-, is real on v real,

(a 1! -- a s. • ,rt' !im:tlzn - ,

-in
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ilv <1. We shall insist that the perturbed flow also be regu-

lar 4t all regular points of the base flow. Hence after inte-

grating f2v, which operation preserves symmetryt we still hav'w

case (a) f,(v) is a sy.-metric and regular function of v

ca.e (b) f 2(v) is an anti-symmetric and regular Ounction of v.

The basic flow has a symnetric velocity distribution

about the real axis and the results of section II allow us to

decompose our perturbations into symmetric and anti-symmetric

perturbations with respect to the real axis in either the

hodograph plane or the transformed C plane. In all further

expres3-ons the sy-netric and anti-symmetric notation will

refer to properties in the r plane*

Case (a) f2(v) a.sy~metric function of v implies

The -y=r.etry rr-laý'on in tho r pl:lne states thj.t

3a=-
f0 (r) ra

Thi p In tan

A--;---f• (v) = f (- v

A; ; ! ' t,,•: ':•.:', t_ th • ,x;• .;:•l'• #-Ie4-
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represented by an even or odd function of v respectively.

aince we know f 2 (v) is a regular function in IvI < I we can

write 5 CD 2n
f2 Z• anv

n=O (5.6)

f2 (4) : 4 n l

n=O

Siace v aM r are related by v - we have

Co

n -O

impl~ying that' f• (C) aad r(-I/ 2 a~ ( are regular functionsf1 a

fa C ( 1)e +2

2 ,l b2

G and GC..1 may be relted by using syiuetry of the

S 2
Ga = r) = Gr (+).

- .tit h the ab',ve we' m•WJ w y rieflne

find tln tho ~ -...v •-awner

S...I' - " .• '
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where Cs (v and, Cl/2ag(a ) are regular functions of C In

It! <1.

Case (b) Applying simitlar arguments we find, omitting the

detailed steps,

G1

(2) (5.9)

G a ga (C)

G2  -

where now g-1/2g (C) and g'4 (C) are regular functions or

in II <1.

(2) Froe surface condition

In a maneor 2i'•ilar to that of ,section IV, the '"ree

surface b,),_uiry condition demands that the sym;etrtc and anti-

syi,.prtric r.,rt'Irbat-ons of eq,'lionz 5.8) adr (5.9) satisfy

,an i :: t dif-rfron'tial equatton

L W'. Y.0

I . ,

e~ e~ reO (b)

IcC' id '



1+3

12% - 2% m2 !ý ý XTI (5.11)

(3) 7orm of h(t)

Cns-O (a) We know 1/p i nd gs nre rcgurlar in Ri<n
Substituting Into

Ih

we fin'! that h(Q is a ~-#-ular f';.nctien of C and h8a( C) eqiuals

( multr2 i~by a C~lct on of C with a 72tnple pole at

C=0. for c:rwenin.encc we shall choaise

C r=-cDr~, 4 )

(5,12)

rr-cn- r J

where a rand br are unk.Iiown. These forms have the. behavior

rr



35P,0/2 44

C. Other 3ounda Condttioqj

The remaining boundary conritions which the solu-

tions ofr the perturbation eruation must satisfy are derived

In AMpendix B, part I. We thall merely collect the results

here. They are

(1) At 0 0. J'e insure the previouSly determined be-

havior of g& aal ga by de~uanding that

ca'se (a) g and C-i/2ga are re-ular functions of C as

C -0
ca-e (b) C-1/ 2gS and ga are regular ftnctions of C as

C- 0.

(2) Upstream nfin, I).

(i) The perturbatioa velocity w2 vanishes

S
case (a) and case (b) 1im ( - )ga 0.

(it) The perturbation pros'-ure F, vazidshes.

case (a) and care (b) i ga O.

(3) Do-~n:¶rea2- lnrlnlty (c- - 1).

No ¶iisturna-;.ces orotn.nL.i:it at downstrear fi, ity

:hall to !rtrdcatI 'fst.-t- in the Jets.

4.etal'.c vtcn~ti ~r¶r of t' 'r
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LI. The results of this work are used here.

Case (a) (1) anti-symetric solitions.

As in section IV near C = 0 we may write the complete

solution of the diffsrential equation Povernine the anti-

symetric perturbations as

r=O

where K(1) and K(2) are the linearly Independent solutions of

the homogeneous equation developed about C = 0, and the terms

in the surmation represent the particular integrsl. The in-

dividual terms of the su,-ation 4 R÷r represent the solution

for a particular intevral with the inrhomozeneous term ha(C)

in (5.10) replaced by the single term

r 2r

(see (5.12)). The significance of the index R, which Is an

integnr used to denote the solution g a has been explained

rrevtously In section IV.

" -"- ...-- ' ytr - t Or can be -written in

the orn

r.r

KY.) aal.-0 are 0~ P d i a ar4 ¶~v: ter-- Lr

a;7va.rs a: ttt.,. z- ">c. :V a ;::~'•a ,: l,• W&Ofl hI(,) in



3:5807/2 46

(5.10) is replaced by the Single term

bp~

(see (5.l2)).

Cate (b) The stlut.ons for the symnetric and anti-syMmet-

ric soiutioit s of case (b) dtrfez only in minor detail rrom

those given above ani "dill not be written explic4tly. They

may be ?oAnd In Appendix B, part II.

E. Apli¢.•LUon _f the BnWvn'ary ':ondtinns

The !etails of ap-Oyin. the boundary conditions to

the sy,.etric awli anti-sy'-notric solutons of the perturbation

eýuatlcns for case (a) an case (b) are carried out in Appen-

dix B, part II1. We 3hall examine here the significant re-

suits of this work.

We note first that s-y.7retric or anti-sy"Lmetric solu-

tiona, made up of-only the complementary s-lutions of the

perturbation equation, can ea.t'y be shown to be non-trivial

only if

<.

.his s -'r •case (a) andr cae (b

l •e • •i nt .It 'ks -the 3ppllcaV)fn of the botin-lary

Ald•ni the .. ie:,, r' .". 0 yi, tw.
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linear homogeneous ecuatiorts that must be satisfied by the

wunkown coefficients 4j, 3ý and t:.

As a result of applying the boundary condition at

Sweo find that K and the index R must 3atisry the in-

equality 2R+ft{X}s

The boundary condition at 1 = 1 specifies that

a (-I) = 0. A nonsideration of the behavior of the various

torms of the solut'.3n shows that the bouda-y condition may

be satisoied in several different mannvers depending upon the

relative maonitude of R and R4 ix L . If we examine all pos-

sible 3ituatlons, noting that at the same time the inequality

between R wi4d R1 "XI , found from the boundary condition at

C e 1. must always hold1 we find that in a_rn non-trivial sol-

ution capable of srtis:.ying n.l houxl~ary conditions

aI f(X < 0.

(2) Sy=2etrtc solutlons.

In the case of the sy'-retric sol-itiont the boaindary

condit&on at C = 0 wil U o sbmtisfied provided AA • ndE r

sttiafy a stn-co .2oeuor h•o~eneauz eua Ion. Th': coe'ffic ont

B• is %s yet zrbttrary.

Th tncqh 'n'tty b,'--twn ii vv.-t R { r s r,-sulting from

< rw4,;-i.! n r 1r, "•-'z4. gr.-,r ,- ,~on. •t = - i
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the boundary conditions have yielded no information concerning

the least value of r... for which a solution will be non-

trivial.

Proceedint to the boundary conditions at w = 1 we

find we must again investigate several possibilities depending

upon the relative ma-nitudes of R and RL [%}. As opposed to

the &nti-symmetric case, we now find one possibility, with

r 0 and the coeflicients A,, 3  ad satisfying a lin-

ear homogeneous equation, for which there exists a solution

with

corresponding to the index R = 0. We seem assured of a non-
as Strivial solution fcr the coefficients a, r and Esice we

u-uzt satisfy only two iin.i-r h.moge:1e:us e5,,i&ttons in these

three unkn'lowns (ona arising rrom the condition at 0 = 0, the

other from the condit..i-n at I)., All ot-,er possibilities

of satisfying the bound1ary conditirmn at 1 1 yield no f-.,rther

perturta' tons wlth HI > O.

u * trbc,)n i-- In c~ (a) we f'ind no - s-i e

F,.,- Dr •,c with ht A

,'• .', th T• - ýiz•: T ,;ý l -: ,r -•.s h._ . t A:- s"

c•rr,: -n tn:. ,. ;:._ - ic..•t- --nag b-t.il ..e •s o l s-.4cer-.ded'

t". t-o h.f

F. t:r ":• •,. ••e. <,;.-'' iu ty t-? a i Pl.t¢no f
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The investigation has shown that non-trivial sytmet-

ric perturbations with I > Rt {X} > 0 exist in case (a).

Since this range of X, with positive real part greater than

sero, covers a strip of finite width in the complex X planet

one mi-ht expect that a general disturbance would be unstable.

4e note that case (a) corresponds to a flow aor

which both the steady and perturbed velocity has a zero com-

ponent normal to the imaginary axis in either the physical

plane or the hodograph plane. In etfect case (a) may be

thought of as the impinging of a finite jet on an infinite

plate or vail. It will be of interest to compare the results

of case (a) with those of the next section which will discuss

the stability of a finite jet Impinging on a finite plite.

Of special interest will be the limit case when we permit the

ratio oa plute widt'h to jet 'ldth to tend to infinity.

CŽept aor the unstable perturbatlon discussed above,

our analysis has s',own that all other admissible perturbations

have R <X}C 0 ai! hence me stabie perturbations,

V I. lIt, . ri'InarLiL-F _ alt,• u.9•

In this soc:!tin we sh.tl conssider .the s3Wb Iity ;f

a flov over i%: obac¾). Tv r-ticalir fiM choson is that

r jet Cr.Pn.t0-y :a :nft,•ty i¶;.lr.4ng nr=3i!y 'n a plhto

of vtt.(A ?1-s 9 ...... ptutict,]y, U-a J,.trs lqa-•

inge, thp .t s ztrilght

k. -e. t- ZA 1 ;0altL
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Initially the authors intended to consider the stab-

ility of the cavitated flow configuration produced by a finite

plate placed nnrmal to the free stream direction of an orgi-

nally u.nirorm strean (Helmholtz plate problem). The e•'fect

of the ?inite pltte is to leave the originally uniform flow

at upstream and downstream Infinity unchanged. In the hodo-

graph plane this results In mapping both upstream anw down-

stream infinity into a single point and one is faced with the

problem of rpplying, at a single point in the hodograph plane,

bournary cordittins pertaining to co-.pl:rtely different points

of the ;hyslcal J.Iane. P'ro,.M , mat&.ý.,ýmatlcal point of view the

effect I: to give rise to am± irregular rir-ular point in the

rerturbnwtion difLferential eciuati1;nr

In trtrinp to find -:;!xitznS' to thir problem an

attempt was 'nn'Ie t..o 11frerentiate bet'•oeen upstreiamr and down-

streti inr.t'Ity by artlf'icially r:1r:irtting sliihtiy the rource

nnk trr,'.ting h eze Tpý.nts In the tcdgraph ;lane. It

wa: tten r.., l -. d that this£ ,-.ulu ¾e J•ne in a straight fur-

warl na.,8:r 'y c,-,nsi-krtnr the lit-qtlng case of a much more

grtiez, ru•z'.y tL.at of 1. jt ir:. ri iig on a fInitt

.,.t-r n 1 .t.,r n , (ty * * r , _.sr. the

v: , >•... . . .. . .. .. .),.=eh.rethe

c...... !T r, • " - *t' * ;.' *- c .",n t~r uni. t



35807/2 51

circle at v = ± a and,± a (where argument of a = e, the Jet

inclination at downstream infinity). ?rom the above, we can

rind f (w) = log ( 3j2  _ 1)2 (6.1)

0 (w2 _ a2)(w2 _ ;2)

After a transformation w 2 the potential in the

Splane becomes

f (OW = log (6.2)

where b = a Then

W(C) = 2C 2 (C b)( ) (C 1 - )(C( b) (C-

(V - 1)(Y - b)(C -() (6.3)

and

2 2 0 (.b) 2(r-b) 2 -(ý-I) 2 [(C-b) 2

(6.4)

The asymptotic inclination of the downstream. jets,

as ch.%racteritsd by L paramter • = Sin 9, can be related to

the dlmensionless ratio (d/D) of plate width to original jet

wid"t Tuns can be eccomplished by conuiderinE the Integral

In~ termsf.~a1.v~~: -. wto

A d...,
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lIow using expression (0.1) for fo, which involies the unknown

sink position a, we finally arrive at

D = z [I - V2 +f log

The limit cases • = I and 0 = 0 correspond to the

inpinging of a jet of finite width on an infinite plate, an

the i.ipi"inrg of an infinite stream apon a Vinite plate

(H*taholz plate problem) respectively. These, in turn, corres-

pond to a.-king the sink position a approach I or + 1 respec-

tively. The steady state form of the potential, (6.2), in

these limiting cases goes over into the known form oi' the

potential with d/D = m or 0 respectively. Care must 'le taken

in arrivlng at the proper lionit jor the Helmholtz plate prob-

lem since no simple source sink configuration results, but

rather one male up of a quadr-:pole aid a do'-blet at w = + 1.

( ) . *& I ' st r •,a -l i n e .11 c n ' • t io n

The ba;.a y condition o- the Imaginary axis (Map

cr thv pi~te) tir thv w ptane is that tho perturbed flow hava

. , v;. r'rm. 'r~ ths- hl o-lraph plane v to a

P.c1 w T1 anv r.i a n
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This tranfoitnation merely rotates the image of the plate onto

"the real axis in Iq 1. The boundary condition will be

satisfied if
-wi Is real on v real.

bvaluating w2 /w, we have that

2 *I)(n 2  +h
rq(rq j)((9- 2 +

2,2 1 2( 2 ÷ )( 2  j) -+2 + l)[c2 + b) +2 * + } Sn

mu3t be. real on I real, Since the coefficient of f 2  in the

expre:;.:on atove is itself real on q real we infer that f2,

MuuL be real on I real and heice a symmetric function of q.

The basic flow is everyvhpre regular in ml < I from which we

can deluce that f 2 q is both a regtiar and sy'-netric function

of n in InI < 1. After intgrating f 2 we rirn f 2 (n) is a

regilar ftnd syr--etric f-nction of • in I < 1, I.e.,

ff) . (6.6)

(2) 3yr-.-try and arnalyt!city considerations

Tr.'_ tas'- V&ýw i: Iy".-trlz tn the C plhne. Hence,

we may dpc:.;tc t rt 'nrtt'rDtitn: i - vtva tric anJ anti-

3vi vttr ic Cr-h'.,.'n¶-a. . try :i the 1 rl-t, which ie ex-

_ .•C . .. 1 .v:. of

(r- it - '
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fa ± qt (" ). (6.7)

Thus a C plane sy•etric or enti-symmetric perturbation Is

represented by an even or odd function of q respectively, and

we can write
= anil

0

fa OD 2n+1
=, b nq

Since C - q thpse relations transform iA ths C plane to

f2"

fa F/2

whvre FS and Fa are regular ¶zinctlons of ( In < I1.

We shall aszune the form of the f2 time dependence

af2 = GI(O G

In tdd !ttlen 4e [now thOut, .luc tc vyw-ýo•try e the basic flow,

we h t-. o.e relatlon

C--G. (zl. Vr.•
G•.. (C) = -+ C,- (C.((

Consistent vwith th-. ,•'.r- . may dfnfle

(6.9)

2 fz
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where g and -/ 2 ga are reguilar functions of C in ICI < I.

(2) Free surface boundary condition

For a r.-retric basic flow the free surface condition

13 3 S

Thi forT of the difirerential operator L. in the • plane is

LL

2 -I 2 2•b 2(-)
k {2'•-)(•b)-•-l [("'-b);(•b .2;

2 2 2

" -b ) ( ','-b<.) - jj
(?-7b)

If we 4jtstttite !-1 (6.!G) the ,r.:ms .or G and

•aa

• , '. '•) ' e a r l : e • t h e f l ' -,w i ng, r e l ,t ' 'I n ns.

S(6. 12)

r
"W Y

5 h• •; " [a(,' }. ¢.:•
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The form of the differential operator Lx and our

knowledige of the tunctional behavior of g3 and ga in I0 < 1

together with (6.13) shows that in ItI < I hs(C) is a regular

function of C and that ha(t) behaves like CI2 multiplied by

a runction with a simple pole at C = 0. For convenience we

shall represent hs and ha in the foilowing manner

C2 "kha(
ha() £ 4k- (6. 14a)

112 k=-wb) (C - Eu
'1 2 ~k

k - - -.C-b)
with ak and bk unk-own constants, These eorms for h5 and ha

possess the r.,-ulrod behavior in II < 1 and in addition sat-

lsfy the functlonal rel.ations (6.12) te-inwise.

C. Other BoundavvX -on1tloris

The remaining boundAry c-,ndttionr are derived in

detail in Arpe-rdi C, pirt I. They are

(I) At C. 'e insutre the rrrviouaiy deternled

t,-.'rnvcr for ga b rlerxA-ing thae

C ani are rera2ar frwtXns . C as (---) Q.

(G) At the edges cf the FI-t$ (C = - 1).

7tw. rtrtur'1 "ree 5urf-ici. shall cn'utinuc' tV origi-

nAe -t th"e e'CIA, tro ~I'Ite, i).c., there

S'(1



35807/2 57

(3) Upstream infinity (C = 1).

(a) The perturbation velocity w2 = 0

S

11M ( 1) ga 0.

(b) The perturbation pressure P2 = 0
S

lum ga =. .

(4) Downstream infinity (: b er b).

The Jets leaving the ed-es of the plate behave

auymptotically like straight jets. No disturbances origInat-

ing at dovnstresm inlinity are propagated upstream in the Jet

lir (n - b) >gs and llm (C - ) g" exist.

D. Cgomlete 3olutlons oa the Perturbation Suation

The details of writing the conplete sy-etric and

a.nti-sy.!aetric so1utlons of the pret-irlation equation are

carried out in Appendix C, part IT. -4e cai now write the

forns -ýF the c~mplete sol'ttions.

() knt.-..y=etr.c . ...- it-orls

4.2 1 a (2) E a a

r =1)

a aa rr •.(1)

wi-ore A& a B r I are un•zno'n c:',-Atcient! -:r• and

K art the c_ tar it;y s-,11t' eviLp.d a bout t 0.

"o; to r-, a ; td("3) with h
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aR - 2f R~r
l÷r 1/2 

- b)(C. -b)

(2) Sy-m'wtric solutions

The complete symmetric solution is

(1)M 2) O E (6.16)
gR=AýK +ex~ Bj E5+K7r +r

where andB a s are unknown coefficients and E K;+r is

a particular integral of (6.13) with hS(C) replaced by

9 F C I_12 1 R.r
h b= b VR+r

!(C - b)(C-

E. ADDlzcation of the 8o'undary Condittons

The application of the boundary conditions to the

solutions written above (see Appendix C, part II for de-

tails) yields the following results.

It can readily be shown that there are no non-triv-

ial solutions nade up of only the terms from the complementary

sclUtons (i.e., 5a or E3 zero for all r) capable of satisfy-r. r

Ing all bounlary conlitions.

-Lesi-ng admhlstit~e perturbatlons among the solu-

t. .... l.zn, ter•5 ?f the prt'.uulur in!.eCrai yields the

.r• a IkOW Irg

(1). Anti- zy=:.-:' r c Z ol'4t!.ons

The bon-dary conllt-lns at C- - E Lnd C 0 demand

tht a total of th.ree !inear hozogerieous equr•.ons be iatis-

!led in the unLik=wS 4 B; and Elar
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The boundary condition at C = b or E (both give

identical information) will be satisfied if R and X satisfy

the ineqo'l ity

R + R1 X < I - rmax

One of the linear homogeneous equations noted above involves

only the Lnknowns Ea and moreover the coefficient of El is
r

non-!ero. If r = 0 we would have E& = o. Since we have
max 0

assumed Ea 1 0 we can set I as a lower bound for r, making0 Eo

the inequality

The boundary condition at I = 1 may be satisriec in

several different ma.ners depending upon the relative magni-

tude of R and RI {JX. Examining ail possibilities we find

that consister.t with the requirements of the other boundary

conditions all non-trivial solutions have

(2) "y~etric sIut ons

In this caf•. the bounda-y conditions at 0 and

- I give only twn linear h-o,.eneous eŽ:v-t1:ons to be sat-
1sfie! by, •,B ani ?T"

The Cni-ui.:ty bln-',y applying the boundary con-

dlt!.•n at s U Is

1..

!,.'W, . -near .oh.oozen.e.u nALoIe are i-- not
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Again the boundary condition at C = 1 may be satis-

fied in several ways depending upon the relative magnitude

of 3 and Rt *xý An Investigation of one of these possibil-

ities shows that if a third linear homogeneous equation is

sati-fied by Aj, B9 arad with rma 0, then there exist

admiawible perturtatlons with Rt {XJ > 0. However, we would

then require three linear homogeneous equations to be satis-

fled non-trivially by the three unknowns 4, BN and Es. This

wofld require that the determinant of the coefficients be

equal to tcro. These C¢ rrfflcients appear to be wnrelated and

it seems Imnrob-able tha- t-nir doter'.-nnt is zero. It does

not seem feqsiblet however 9 to evaluate the coefficients in

closed form in order to demonstrate this fact mathematically.

Assuming the determinant to be non-:ero implies that rmax

muzt be greator than tro. This strengthe-is the Inequaltly

found at C = b and we can then show that no admissible pr-

turbations have R1. '0
f ),fte

A!....ugh -au have not Cnund a on,-dimenslonal corl-

tin--;- of e:venvaituv k, )ur pres..nt analys•is has been able

to r<.-:trlct thc eo.:b'. v:tiuts of K to be curplvtcly in the
left .a!f 47: the c-- eXt K Dlant,. Th1q .hnw*a thimt *vdy aA

b; z'bl"- 'rturba2,ýn r.1ha s 1h 0J£ and cnheta

it Jit -:!.iung nornaily "4pcn a fi;-.Ite plate gives a rnutrally

.tz"It: Qr :jtt_1b flow ci.aftturat.mn.

7.. c of ahM.AI Ut ar, valid for any
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finite but non-f.lro r:tio of plate width to jet width (dID).

By making thi! artio as small as we please we can consider the

flow of a Jet 37 arhbtrarily great width part a finito plato.

3ut this is a proper physical Interpretation of the Helmholtz

plntn proble. stnce one n-:vcr ha:z a truly infinite stream in

reality. From this point of view the stability conclusions

r.achod in this section appiy to the Helmholtz plate problem.

On the other hand, we find a difforent situation if

we make the ratio (dID) very large but still finite. In this

cuts the point r = - I continues to be an ordinary point of

the erturbaticn differ.iantial oq,2ar.on and the hound'ary condi-

tion z, = 0 rust always be zatizfici there. Howevor if one

actuailly sots d/D = oD the basic flow of this section r-oes over

exactly into the basic flow of casc (a) of "-oction V. Aow

the point t = - I is a re,;ulir slnvular p-int corrosporiling

to upstrnam infinity and the bounla.vy condit.on z, = 0 no

longer ap:lois. A ric-xamination o" th.• work oi, the prc-sont

s:;ctlon will £how that it was the pr.-Z.:nce Wr this additional

boundary corw~tion w:.ich ;r.,.cludA;d thŽ, ,txit2 of anly non-

trivial unttabL prturntrVons. Thu.L, -i; far ris stability is

conc'..rn~d, thim I±-itinr can-, (t/O- r wrslI I, t hi

iMpinging of -, fi t' J tt on a pl:tu of. -xt'.--'nCly 1-1rgo width

dot's not -;';ru-ch ti,- .a• tf a j, t itp! wing on a truly infi-

nttc. vaA ""'7I tn "ur.n r ir 5,<"lt5 a v-r -I cz. (cvsc (a)

r e ,, ~ r ~ ('*~ ni .V)'t 4-
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This report has prusjnted the results of an inves-

tigation into the stability of four types of two-dimensional

free surface flows of an ideal fluid when subjected to small

perturbations.

The perturbations of a hollow vortex flow bounded

by cylindrical walls were shown to be neutrally stable and the

propagasion of these disturbances was compared with the pro-

pagation of gravilty waves in water. The ir:pinving of a Jet

on a finite plate was found to be a stable flow configuration.

In the case of a series of orifice ^lows all perturbat'onn

were found to be stable with the exception of an isolated un-

sta'-le perturb'tton of the flow through a Borda mouthpiece.

The existence of unstable pe-turbations ',as indicated in the

case of i3plnging equal and op;or-ite jets.

A5104 and :ib',e5 have previously shown in [1) that

certain simtrrIicatIons are pos-Ibl'; :hen the basic 'low has

a .'y-retric valcity dis rlbitton. The only antI-syw:i•tric

Kc;m trat'-_i in #l1s rt:r,ort was m.he ý nir:]l h.i'ow vortex.

In the crulrse )f tiLe invotsttgat!on the aiith-.rs attempted t)

tr,.ft lh-. rer.tirtra!'-. 4z a a '-tw vrtex br.duL.!. by p-irallel

pline val-s "a an I21t onal exa&::; P of an anti-sy:z:.etrie

t3;ic f.c... 1i this :ao, te `••avi, the La.c "ow potP.ntial

-o r:n_4a a:a exort.: on in;i;nvtnr & !i~ttc rtnction5 :.rel

th, tt"s -jrfrj a -l'it lo o

iiara:taole.
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in the remaining problems the method of attack used

in this report did not result in the determination of a onQ-

dimensional continuum of peroissible eigenvalues and corres-

pordin• elgenfunot4ons, but rather, only gave upper bounds

on R L{t}. As a conscquence it has not been possible to form

any sort or sot of elementary perturbations capable of gener-

ating a gen-iral perturbation through a process similar to

Fourlor intorrat!of,.
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Appendix A

Oenerali•ed Orifice Flow

Part I. Derivation the 3,L.WarX Cond

(1) The edge of the orlfice (0 - 1).

In the basic flow the free surface originates at the

point • - I which is the map of the edge of the orifice.

Since we are dealing with idealled sharp edged orifices, It is

reasonable physically tc" demand that the free surface continue

to originate here in any perturbed state. As disCussed in

ae!r t i r% T i *k 4 & -^ , 40 ..1 1 ~ 4 4'~ '1

O.

In ter= or • we hf-ve

- -- iX - \- '%.U~- r
2 1- / ix V kG"G

- r(- n+'G5e e , : 0 at =.-I.

.. u 1. jut •. - 1 ,s a re,!jLar ý1Inta Df th.e Lasic flow rind

h ',cu wo can expect X9 G1 :'3 to h -ae zi "•rtte V:uU hrere.

~~~~~~~ .. . .n.. . , . -. o n '- ':: " fur •- t e. t w

n,,.Jd•-,.don} that ~ -

'-:t'.t4t.'q for *! ' C frt: U'.IV) r C. :'

F. Ia k• , '.
- ~4 (V

< .-
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Taking the conjugate of the second equation, we have

- a.÷ (-1) - C••-i) = 0
a gt (41) + \X1 0

S
givine as solutions

g (-1) =a

gC (-1) = 0.

(2) Upstrean infinity (C = 0).

In orier to preserve the n.:ture of the basic fLok we

demand that any perturbations in velocity or pressure vanish

at upstrea-m Infinity.

(a) lrm w,: 0
(-*0

from (2.6) V v~t.
W2 W 2

In tl-rs of at
S- 2 C n (L.•1_

The &AM*-ay conitlon IV1.I es
-%.&I

n+n

Ur . oXt * J0 t1 :Q

As il bmun-ninry c~ordi~t -t:; (1) .5jb:,tit-:t In for G1 and (2 fro

Ii) :.: • .

; . .. .t' -' 4. V=j "C., "
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functions of C, hence we may write

gs= arC r

-Co

ga : rtr1/2.

-CD)

A-plying to gS the boundary condition,

im Cn 0,
400

we see immediateiy that

a 0 for r <(-ar

for all n. By means of a similar treatment for the expression
for ga we can find that

b Q= r <- 2 for n = 1

br = 0 r < - I ror n z 2, ¾+, 8.

Th" above thrri i--ply the fo.i iowing

5(
i () is a rezuhlr ft'nct+in of C at 0 0

for 32IL n.

1/2
C N~ r g(dar a-tC=

rr

.or 'i a

c p. (r). jr r.gur'r •t r C .
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(b) !ic p 0

C 40 2

?rom bo'lMar; condition (l(b)) of section II this requires

1i , • 4. f r) =0

or

ii. at {XG Ie x + \G 2 O e J0o
C-40

;!once

G (0) = 0 2(0) = 0,

From (4.10) ;,e find thW-t this re.1uirs thnt

g (0) = g (0) = a = 0

and as in bounda-ry condition 2(a) we can fInally establish that

Ca1 ga and c-1/2 ga

are regular functions of C nt C = 0 for all nr

(3) Downstream Inifinity (C = 1).

In the badic 'low, iz the Jet pr.ceeds downstream

fron the orifice, it asymptotically nppronches a wunform

strai ht Jet. The )eh.vlor of a auniform str-.iiht jut when sub-

Jocted to sa•.l dlsturb-nc-s is r.-..ly investigatoJ by using

th,! c. tnors of f6', cv];..r If.

it is f!.mzi th-t 4u4ch f .'• c mLIt;Uktl-n is rnutral-

ly 5•'. • I.m:ps¶ t b .. '" *f _ 1r" ,
* t

w..t ;1~t  -3~ 1- t- W

~~"),' -r ?5* r t~ v -,t t !
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express this by demnAding that the change of the velocity per-

turbation as seen by an observer moving with the jet be zero.

Wxthemattcally this can be expressed by demanding that the

material derivative of w2 vanir'h, i.e.,

Ow aw
::92+u.:: =O asCt-41
at Os

W1: qrG

s = distance along the jet

anld
U = velocity of basic flow at -- 41.

';e recall that the asymptotic velocity of the jet U = I and

we note that

fo = U s + const, = s + const.

and
S=U * t + const. = t + const.

hold asymptotically, Combining thfrisc we hw,)

s *s const.s

t - C ' conSto

At.t tht: In =1nd -;,ur ,inztrca t:;fInlty bv-%'tary co.Iit ion

bovcmcs zImr vlv
dw

w¶&- re t ha s b n r ; -i b; f mnt J t ft hv

"t. -frn 2 t . '

.-- ,t d Liz V i

" L rtV
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whewre 01I and 0 2 atr.- n- na'nro constants. Our boundary condition

reduces to

I4(C ,r- 1)IAG) 4G0
Ff 0 14 df 0  2

in teýrms orf this beeomes

(C1 Iý X(t 1)e1 *GC)' 2C 1 0

as C-41.

The point C =I is fralom. an oxamnination of' the

cquattrmns gov-'rning Gi1 and G02 (k+.ll) to be a r,-ular sin7,uiar

ronint or' thu. diW,".',rc.ntial uqu-zilon. 'From this we can Infer

that Gand. (G, will bu~havi .;ithc-r 111cc' s-Orn: powur of(Ca )

o& Uikc log (M - 1.) railtipli-A by snrnc power of (C - 1). With

this Informatoion it can !ýe zdnhwn that' fr czio a sa~tisfy the bound-

r.try -r~rttlon *-'Ibowe iy dr,fmand iinc ttr i t

- 1 ad (C - l)"ýT exist at C 1

5i~f~t.1in t>rG and G,. fr-in (4..l0 our Vna"yconditlon

(Cvl'i (d '*kgt* Lvxi:t :,t o 1#
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Part 1I. Dertvatijon oL Igasol'4tiofl of tha perturbaation,

The perturbation ocquation (4*.13)

$ s

L~ (gCa(cfl ha(t)

in expanded torn Is

a s r

a a +1)'

S 2 2NS
+ n7 X M(C 1) ha -(CAl a)

+) INT-i))1 2nC(C- h (Al

ThQ, differential i6cuation (A.1) is a lincar s,.cond

order- :,euatt on with r.-gul-r dingulnir po~intoi at C" 0, 1, m,

aMi hinco falls into tWi.; clztsn- of a Fuebsian dtff'-rontiu1

%Jiquztt'on of the suc3ýnd ordlir.

"?o' lowing tiv! m~Žthod of' [?, pp. 155 ot sun. 1 wo c~in

put cýquaati')n (A. 1) into stw.dard form and ttheiu ~ roots

or t~h2. indielal aq'uiltin rit thJ Lii-tu2 sinf.-Wilr rtilntz. It is

not :trryto. writc. tlit, 4 >-rni c--rI1citly, 2ilnCý-.-.. knowbs.dgc7

of' tht locitlin of tht 'Aj!ir~vulr V,4flt ari t':rrts of Uao

~r~ta vI, -- r th,- v--n ýnlt5 nfl thc-- slncrul-kritiu-s qsl

thvy, nirf Acv~Uyinti, cnl't"ytkt r-ilnus tho feirm of

th r11-t .inns:f'

x~ tŽ brn

4ý r g

t (irA'V-2X

a-- Vi
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X~ l+X

ate= .

if we make the following change of dependent variable

g L I)XH (A.2)
r S

where g and H stand 'or either gS and H3 or ga and Ha, the

auporscripts having been dropped tor convenience, we again

obtain a difterential evuation with reKnlar singularities at

- O 0, l1 a and with exponents

of at 0

' OQ I at• 1.

The diffturential equation for H is the stan,1ttd form of the

iyperrg,'metric ez'uatlon.u

We are vrw in a position to write the soluti-ons of

the hs:n.Etne-•euz c t':, !.e., (A.!) with the right hand side

set t tjnil t', rvro. In rl.vrr-fll the two linrvar!y Indeponlent

S9U.:,tiCl ¶about % reg; Lvr- ,Inoular ,:pint c . with exznonents

Pt arv kf thW, f!n*n
H~i =(K a)i FM1

V'I ( !- L. r•" "2 ... ....•" -ni a. Usinfg the tranz-

fsrtni- -n (A,:} ¾.' ... , t'-. fil n1 o !rl y -t r ¶1tnd pcidnt s-)I-

S r l x~t:, tht6 f rjrms o f tht zo:--it. tons- r gsb- ,tt
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the points 0 0 1 and -I*

C( -l)F (A-.3)

KI' (2t( - 1) p(2)

wh're FM and F(2) are regular and non-zero at C = 0. The
above Is vaLid provided is not an integer. If such

2n

is the case the ,exponents of the singularities differ by an

integer and flirther considerations show that K(2) must be ro-

plnc.: by •r())k()

k...il x(2)*
K(2 c2c" 1, g F( I r + Zt(C I) F (A.I")

where c. = constant ant F is rYublr -in! nnn-o:ro at C 0.

l(3) (3)S(()l F (A.T)
K(1.) *1 )lK! F(1+)

K c,( - lir(K- 1 I(-(3) F
fj) (•

wi-th c1 4 zconzt u't an:,' tni ) r.r 2n11 non-zero at
-.1 'Z.=y. In any gt,!l ; abL r.. b-th th. z'c.1 ' -,,ns -iLn ut C - )

an:• f 5, ut . 1u";t r 1 nrc v Uii, we know tht.t "l lnr:nr

.--. X tt-.r .... mu t U,.1st,

-ihli, w.'o cvi' -..ritii,

~!1) .. t) 0,

•:" - - " c ." •r :<- .,. b .... (A t )
r-

V~rc ho:v ;Absrr ns.tt'r•
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alb2  a 2b1 =b

a1 14e~b1 =4$ •O.

An examination of our differential equatioa (AAI)

shows that the point C - I is an ordinary point of the dif-

ferential eGuation, and at such a point we may pxascribe both

the value of the solution and its first derivative. Further,

we can easily show that it is possible to choose two linearly

independent snluttons, K(15) and K(6) in such a manner that

K(5)(-I) =K(6)(-I) I

(A.7)
K5)S(-l) K(6)(-J) Of

As before, we may Aiso write
K(1) a3(5))

X()= a KM 4 b 3K(6ý
3 ~(A. 8)

K(2) 5 %Ki• .N(6) We•)"_ •(5) •(6)

wIth

3 b1 - b 3 b2

`3.ý 3-4 62•

H,'ving • the C:.pl,-4tatty s~itIonlD the appro-
~rt:te ris t *e n7rtIc-Alrr integral. in Vie neighborhe,ýn..I of

th yIni t sh!ch we ; s to apl-tdxycritoz re

roaii•l fzund, Thin, knowlnCp tw !n'ry Innpondont zolu-

ttona K'" and K-I' we can write the L-xrticiL-br Ilntevrl
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(see (8£,p-1231) as

MJ (C + 1) h (C') U)Pe.I, = K 2i d

C v 1) W (K 1  ) (A. 9)

(j) 1) (C(t)(C-0K K d
-1) W KK(1K(dC

0

whore C. is an arbitrary ordinary point which we shall take as

W(K(1)K(j)) Is the Wr-nskian of the two solutions

and can be fvund ir.mediately from the differential equation

(L.I) �s (see [8, T.-191}),

W(1)K A exp t (coefficient of gC.d li

w.ere A co-nta,-t. Substituting from (A.I)

A exp er - dCw( ,I'm(K - 1)J
'- C cr a(A.lIo)

0-nV " i

,,:nco t,.u s<I•tt-;ns ab.ut = , - -~ C - I are re-

lat•!A tthu .c6it1•n..aaut C = 6 linnar r,'Katilns vo can

nfl( A- .()~ =1 __

,~6,1
u((0 'C)

L
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CoMalete Solutions oa the Perturbation Eouation

(1) ALnti-symetric solutions

The complete anti-symetzi.! solution Is

a aK()+BK(2) + CD4.5
r --O

a
y%% is a term ot the particular integral found if h(C) is

replaced by
a ¢ "R+r

in the expraesion (A.9) for the particular integral.

Making the appropriate substitut'ton we have

aR a X C( )F(1)) + Ba (C( .1k(2))

R=S (C(C - 1)~l + Ba (C~(

00 )(C)' ICF((V)C (R-r)-3/2-v -2C2R+r)-k (2)
A. FC-X F dC

-i

-rr - -- -- -- --A-

F( (Y•l)' N r lei3/2 d(t - 112 (3+r)A (l N
f . 1

TA cas•e

n

n.2

thet t. p Aý.~ sOlutI:)ns are K and r. and we have
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411 F(2 4.x~l a x

r4 i.~c f~ rc,(c~l)C() 3 *

&()(R4-r)-3/2-v(,_-a20t+r)4r (2)' d

-(c2'loC F() <sF()'JJ(C%)C~r)-3/2m-(CL) 2(R~r)-

a' (A. 13)

gA a1 4B~a2a [C(Cel)r+-F3].(ARDL 2 L+ptBei

xQ* m) _a )

1ogCC~1)F'('.0'(Ce1 S' x

(C1) ( H .cixRr)-3/2evf(c 1 ).2(Hd~rl4lU')l4 , e $(C.l)F ogC3)Fe+

' ~5~j(C4r1)C-(Hr,32vCf)-2 ($r)1-XF(3)dC})

-1~q% . (A.(Aa 14)&) r *

Rn3n r=O A !

x (CiCn~" KLL6afl _066 x
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(2) Symrietric solutions

The complete symmetric solution is

s (1) s(2) a o a6)9R = Aj +N K + K CL + E Ki+r .(4.16)

r=; r

K a is a term of the particular integral found if

h(C) Is replaced by

t - 2a

in the expression (A.9) and E5 r +r Is a term of the particular

Fr
h b " tR_
Rn'r R+r Uc -

in the *xzpr&;:5ion (A.9),

Mating the ap-ropriate substituti.m-ns, we have

tr 
0.

R An

x • - -F dC'-tF 1- I)ý l (l)dI

-I

r - A

-c • i) (.-1) -- (A. 16)

-,t
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nN2The above holls except when k = -- -fl-i L N = O, i, 2,

... . In the latter case the appr riate solution is

go A(-(C-1) 1) ' V(C t log C'(C-t1F(-)"(Cl())R Bg 2

rC
+ 4 -1) V lo) M-14 CXF(1)+ C1" 1 X

-- i
( F1 )%r.rc(4 log F()+ CIF( 2)l, 4  j+(,.l)m2(RI+r)-- . X x

x F dc + r [05C<e-)C x
. rro I.A

x ,)g •(M-1) + (C +J÷)C -)x

-1
-?(iI-r)-a-A (I) •

x (&l) F dC ' (A. 17)

,1. *rfrsk½ 14 ( s -s ~ ASCt,-I) F (b rib )rcr(r.-l) x

-1
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(3) (1 £ D
Ci4 (C- I)l1g(C-1)F + F()t-~ zt

coml') ý-)F() 1,(Cj)ý(P-er)-lt1-v -2(-R+r)- x

z log((-l)F (3) +(c+l) (fl+r)aley (Cal)2Rr)l- F ]4 dC .Jc1+((-1) x

c

I ~(Aa 18)

abc~u j~jaJ
9H aYa +nBK'Ks b ~nh~ ZL* Kb pb fzn&

(C-i) K~ 6 dC-XK6  K -d(5
-A C ~ (c-) K d r X

iir~O A

(5) 2 R~r)-i £+U -~r)12(6 (6)

~ (+!)CU r..j K dC(i (Al 19)
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Part III. UppLcat•ion._o' !Alaa CoaltIons

We shall. now apply the boundary conditions as derived

in part T of this appendix to the complete solutions of the

perturbation equation found in the preceding section

(1) Anti-symmetric solutions

I) AboutC=- 1; ga (-I) =0.
C

An Inspection of the solution, equation (A.l5)9

shVws that

"(Ka is zero at I.

.Sow

ef aaa (5) a a )(6)(gý=O+B )K (-LY-(A(b (-1).

(5)(6)
.uhstttuting from (A.7) K (-I) =-0 and K (-1) ,I we

obtain

b Bab a 0. (Aa20)

it) Abnut C 0; g or 1/2 f2 is a regular func-

2n

-1 r, tho I /A n - retuirtr .;u sha l. find
thaIt (i:t •• n t( •"th.t.... ..1 > e • iI cf, tt?,o •nto n'' , tim>'( 0, 1, 2, 3, . ...

nrfl'. hn.I, , .. ......t pf.r'!s crn be &e,±n by t-u

L ... ,ff tr '. :,,yrt4..t :, ; ,("?te
It ; *i •i~.:r r t iu tirra s n i*.ý r1t t t e n~'
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integrand mCR(r) (2)14 %* +)4 z)"

may be developed in a power series since it is a regular func-

tion of ( in the neighborhood of C 0. Our Integrand then

looks like

(I(Rr)-3/2-v ( +0 a2+ 2 0+

which for (R+r)"3/ 20v $ - 1 may be integrated termwise, giving

the behavior of the integral at the upper limit as

C r / (b0 + b1C + b2C2 + ... j

Multiplying by C we arrive at a function which behaves like

(R+r)-1/2C at C= o.
:Aow applyint, the boundary condition C l/2a regular-, we get a

bohavior ltko (R~r) ; and applying C g/2ga regular, a behavior

like (R+r)-. If R is not restrictid as stated above we

would have to make all zero for r s'4ch that (Rr) or

(H4r) - 1, rei:;uctiveiy is iesn than zero. Since Ea has boon

azsVra*4d nrun-zuro we must have (R~r) or (R-r) - i, as the case

y Vi, catuutc t.an or •ujl tu zru giVing pLmicible W3lUQS

of R ac originally statcd.

-- ..... of 'R tho --ry t,2f5s 'n thy solu-
tUn ga which do not Irw ,;fy the bc.,!niry co:ditons !:an o

,, A ,,r .r 1'(A.
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vhen
X 4 - (2N 1 1) + (2N + 1)

(B ~ E '2 a C~ 1)(ofl K (2) (A* 21b)I ArO r r

whe - (2N4 + 1) - (2N + 1)

N = 01 11 2, 3, ,.O

[ Ea D (2)(0)) K(I) log t (A# 21c)
A r r

whun

X - (2p ÷ 1) + V (2i O i)

E a D(1)(O) K(2) Ing (A.21d)
A l-Ar rr=O

when
- (2p + 1) - +(P + 1)

P :" R, 9It + I R + 2,

.e noto that it can be shown that

, W when ON - + 1) - 21 + 1)Vn
-nd I---n-=---J

v N+ w:-An =~ -2

The I ,n€ Itit;-. hnt: bcn td-,.;.ted

, r•

(�'�i rl ngI -, i nte .- t ;-r ")l in ttgd ,l In

wit F'l 1, Tr Ir ar motc--l -)f:riA

i-It *j' .r • in t rrta , 1 r• e. r #,ior .I ie

' 9 $, .. rd I•
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D(M)(O) is the coefficient of C'- in the series
r

expansion of the integrand or the integral in KR+r involving

F.

The terms shown in (A.12t - d) are those terms in

g which do not possess the half-order behavior required by

the boundary condirion. Thus, in order to satisfy our boundary

condition, we must set equal to toro whichevor two bracketed

quantlties in (A.21a - d) are relevant in view of the value of

K. We .inally arrive at no more than two litioar homogeneous

cquations to bo satisfied by the unknowns A"', BR and Ea.
R r

2
Case (h) XbouN + + -kU2

In this cazo tho solution gvalid about C = is

eqý,Vaion (A.13). Thi .lrrumrpnts ustid in th. preceding discus-

sion concorning the cholco of the inatx R nro still applicable.

However, on.: c-n show thnt K can no I.- ;ror tavj on thr, special

valuo• ma.ping i or v N + 4. In this casze it can bo zhown

that In order to s3.tivfy th bvir.nirvvy condr6t on wc ntAst s-ot

" to ,cro lfi t rf K nd K ap -I-i rt Iy.

This i in giv; s rI:w to two I In, -r - r},o' ;fnt,'u' -qnatioans in

r

'!.i) A.4%t C t 5; Z- -1) g1 ortsts.

r ~'thw tr:2v fr t ho c I r 'T mti :v 1aI:L 5n at -

u.. ry t 'nyt.t- n for J- v-A ue .•f k. t r,,:nr..

to .•""°,; - " 1h c rd
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(IS'* - 1) o in a Power series and then integrate terawis*j the

most singular behavior after multiplying by l)4wx will be

like

nonce our boundary condition will be satisfied if

2(.R r) .2 R4, ýx 0

or
Rt X 2(R + r)*

(2) Symmetric solutions,

The applicatir)n of the boundary conditions to the

symmetric 3olutions proceeds in a manner very si-nilar to the

anti-symnetric case.

i AOut g a (-I) = a,

An Inspr-etlin of the solution (A,1.9) shows that

K-4"' (F.5) = 0 at
R+r 1z a

arki o,,ir bo-irodary ylolls

*-S(A.'b W b A. '?2)3 A 4)

11. Ahlýjt C; F, or g rtvular st Irv

C se,

antl-syrt etric c-!,,tse thýit

as All,,-)wable valwi,,. of the

tFu,,-,t have a C') maklngý K,3 0. `41*he
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tern in gR which will not be regular after applying the bound-

ary condition can be written in the form

[K A -=~ 2tr
3 as (2) K(1)

A _ (O) (2 (A. 23b)

r-O

whe; n

K 4 - 2U - 2\/

[2~ ~ (1~8 ~ llJJ) lo(2)2?c

Ar r=

when

K 2 - 21 V2n(1 ~ (P)O 1¶ 01) logC(A2)
A i'M)

tiv !.0O that ft can ½• sh.•w*n that

w:, won = - : .zf

Es Dl) (0) K (2) log

"P [U 2 '--~r -

de -'o "- h
4

t ItiT ca Ie siwita
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written In the form

(2) s C(2)(0) K)A.2 1+a)
Ail> I r r

A r rO

when -N.k# 2N 2 n

B ± () - .1 0 E8 cW(o))] K(2) (A.24b)
An A r r

whenn

f = 1, 2, 39 ...

P() s (2) (1)
An DC (Q) + 5 "' D (0)] K lg (A, 24)

2 - 2P + 24L•

YnD.- (o) + >2 DSI (;))I F12 log ( (A.2'+d)
An A o r r

*k - 2 - 2JV ni
P - r, 1k + 1 ... **

wr.,c r 0 Ir- D( ) hn7ve the same meaning, an in thn anti-r r"

v-r I r C-ns4) "ril this votai ton Ca (C) an,-% (") ha n

m~3-•ezi:' with Pon to the tori Ka.

41 t'er tr r) trfy th, . ary orid.I.'o, i4'n st

sr't @..w.•: i t "o t'tO wdhi1 o' .r t4,) br t~kc -,eke ed ii titi I,vs n r I r ,a-

1) 'r (A..½- - ; t.r rib v ut tn vi,' cf th' ;.ru>j: of 'k Thi5

ft. ' " ' (.I &F ,hwtnrv; 'i"¢ >t."L �s ..r' ...- •J.4.

s-d
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2
Case (b) K = N

S

in this case the solution for g1 valid at = 0 is

(A. 17). W'ith k as given abov-e neither 1 nor v can take on

integral values. In this case it can be shown that in order

to satisfy the tioundary condition we must set equal to zero

the coefficients of K(U) and K(2) separately. This gives rise

to two linear homogeneous equations in the ,nknowns Ali it r,
anid Er5 .

F

Applying the boundary condition in the manier used

in the :%nti-sy :metric case we find the following resti iction

on K

Apoendix B. E:iial and Opposite Jets

(1; Abcut the p:int 0.

"me h'e artlready sr*:cifid thn behrnvior of tho syivet-

ric and antil-rsy•retric n-rtuirbat¶cns In R< C I for cane (a)

andi (h). , s-,ll in ur, this behn'-,!or by 'erv . n,- tht

Lizi

i} . '=y -tu'. -

•I *'''* -' i ' V.i 1t V±
.

A "

'tat
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i$ut

2hnc 42 /2c

1)Qinc +1(ý 1.) xtt 0

This Implies

11M (C O1G = O

lim (C - )G =0'

Suh)-tltittlng for Carn4 -ripfrýým (5.8) or (5.9) respactively,

we frin ca-.e (a) an~d cane (b) lim (~ r' = ~ 0.

ii) thq pertuirbatiorn pr'ýsrure P2 vanishes at iipstream

11M P2 0.

This nrionIcz~r

I im R4 C>, 0 +% 0

2m G ,

n r r~~ I, r f tw
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(3) Downastrean nfrlnit,, c 0

In the limit as we anproach downstream infinity, the

jet is to act like a straight jet. To an obsarver moving down-

stream with the asymrptotic jet velocity, the perturbatton

velocity will appear to assume a constant value. Using the

same argiouments as in Appendix A to Section IV this boundary

condition implies

(C 1)tc( ) 0Gi = ( + 1) h(C+ 1)1 ~2] of
IV

Using oqu.itntrns (5.8) or (5. 9 ) respectively and ob:;orvin,: that

the V'ALnt 1 = - I Is a regular singutlar point of the- pusrturba-

tion equntlon, wv can rittsry the above boundary condition if

case (a) and case (b)

g
C•xI•ts.

Tho ;,.rturbt.v , uiL•f.i"•r (C 10), iftor substitution
O(f (§. ! I) f'•. t l fc;r'n T, the) j di,'r( n [',A 1 F r'itor Lk, b{)cs•ffloj

- f , r, t ) -2,r

r r4r

"sK.
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Equation (B.I) is a non-homogeneous linear ordinary

differential equation with regflar slngular points at a1  0,

a2 z 1, a 3  --I and has oo as a regular singular point. The

exponents of the singularities a,, P, are shown below

al = O at 0 tO

a 2 z %1 32 = l-, at C =i
a2 :\, 8$t+X2t -

rt 3, 3 -i at C =w-
2'

If we mak(o a transformrixion of the dependent variable
(K½ a2  - a3  -

g - a1) (C- a?) C<- &3) ii - (C 1)'x• (C + 11(.a &) 2 a 33 1 H (B,2)

we arrlv, at the folO!InI homor,'neous difoerenttal eqiation

f or x

with th" saame rp:ulnr uingulnr r,)ints. The new ex:nonents of

thw st4lrrite 'ire T-hsiwn b-,,)1 ow

0, 1. at r 1

s. 4*- : It - !,

,.a,: (B. 2),; s 'cno;r¼ ; zS ':e's~ S~ dffere:nti rl e 'nt 2, r (seŽo

fyi ~r~1[U t
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_Sl4 oso 'i _omorene ous &a~u~ation

With the knowledge of the location of the regular

singular points and the exponents of the singularities we may

write the forms of the solutions of equation (U63), The appli-

cation of the transformation (092) to these zolutions will

yield the conplementary solutions of equation (B.1) for g which

we will designate as K .

About C C( i (
K (1) : 1/2 (t . fX( 1) % F (1)

K(2) X (. 1) (C + x F(2)

whr (1) F(2)
where F and F are regular and non-zero at ( = 0.

3 ) 1 4(3)

K c((C - 1) log- - l)(+ 1) )

WX 1). %)•'• F~ 00

whare F end F aro rerular anl non-zero at C =I and

cl+ -cornstant. I'li addlition we know that in -,ny reion of

con=ron vrnliditV- of the '&b"ut and I there

ex1st linear rKlton5 -f t" f!r'.

K(I '1 3) b K -1b_0.• • bK wlth nib. - M,-a.. 6 .• t O

K' z a "
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K (6) =c 6 (C -mj (C + 1)'1+,\og(C + 1) F5

(6)
where F &ind F are regular and non-7ero at 1 , and

c~. cojnztaa,,t. Again we may write

K (D4-aK *bK 6) with a..1 b 1 - b'a =b O

K(2) Kf k76)

i'ruce^ding as in Appendix Al to section IV wu, can

write the pnrtI'-.lar integ-ral as

Vh K),KW

CJýC- 1)(C, 1 ) W (K I 541

r l
(.0) 'r h(O F,11 t d

wtr"o A I I t, a a- n taým1 1ni t~a riyr i ni epe rv ient c ompiver.mvvit ar y

4-Vi-nys ind 'CI? t ) is th- W.rongkinn o!* thos, two n91ýu-

U i~s -;o -ay rv-itvate ýtn .'r-nsktanz5 'r- t htrreni

'e~Vtt 'y-r
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with A = constant.

g2, Uet 2iUtilo t.ht .ertur bat io-n £guatiorn

(1) Aiti-Bsymmetric solutions.

The complete anti-symnetric solution is

a a (1) a (2) CO
*R = K BRK + : E r (8.5)

r=G

"halre
EaKr R+r

is the particular intogral when h(C) in exprossion (B.A) is

ropliecd by

C " . \4•~h•*r aa~ ••÷I

ci'r
or

cs•se (k) /-_1 --' - 1• :. 2 . -

'*r r &C4 ,

t tg;ikjp, tho. ap :r'.';~r'Intr s-ib.:~ttat *~lt,-.:• wo ha:ve

a A, rKr 2  
-,: - 1

.. V . I,)a :'*-

t (V - ; "• r :• F ]' " (r-1)
r r=C; A

tb/, .l (VI : •r +
• . ., S., - V F" r <r- ) "X

r Axx

x e-
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an (2)

= A~(C1/2(Ce1)A( C+)() -1/2(C1)2 4 (C+r)+%2

* N' ~ f 1/(1)' 1/
CO

K (C+l) .2(R+r)-2- F (2) dC.F (2)1~ '(Cl)2(Rr)\l(C 4I)m2(R+r)-2KXF(1

(to (B.?)

abohlLL

case (a)

a a na rri ,ib-Ka X(
gil ft, 1D a (+) F2(4C1

rr.C A

SX

((¼) - F 9R (C-i ~10 r)-1-kX C1)
-?xr~- Fi c-1. 2F').)"R F' ]dC

+F C

x t"V4-1
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case (b)

Ral4~3I- x

x O(Cd(C1N?3+(C-1) >(C+1)§F4) >: +(l J

(C'1) r=0 A (1

ý Y)e(R+r)m2nX F(3)+ -112 (r 1l) 2(R+r)+% ((+) a2(R+Z')e2eX F(4)

aK r F ]+(A bvt. b )fcr)(CeI) x

rt A

x (C'sO
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case (b)

(5, a a

l)X +) -k(6) (o E r 62S(Cfl)lklog(C.1)F( e)(l(t÷l)F() + %') x
r=O A

(C5)J rcr 2('

x inv,((-+I1)Ff (C )2 )2(R 4 r)+(m(Rl)U 2xRr)P() x

co

x ~g•÷)(5) 4t" 1/2( F- ) (~)k * '(~)2(6) ]a c

J2 )2(R~r)+ XCc, ( 1*)log(,+I)F(5+F('), C-/2 •1) x

I) 1:a

eQ.1()(1Bol(5
x (C*d)' •r -'F(• ic ([. ii)

rh --tr -. f
";'h, , ,;:] t• ym:vt"i'a7 t .S Sz

",H- .D * R ÷ + rj ;(.1•
R ""rvO r "ir B."

r ~dr

-i thn t •rt c:I-tr t•¶ytng;- 0 e • h(on ) 1 I; L . ;.re•-t.r (1b.'+ is

r"•; i-c'¶.i t."y

"- -r..... i

"- *r V,. *
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Making the appropriate substitutions we have

Ay -)s • (%- (2) Fs

c r~A

V~20)
IF

Co0

case (b)

R rO A

x (C-i) k(Cal)k " l 1 -( .,(R ) (+I "2.1 ) k x

(2 -/2 2(3+r)-I 2(iHr)-K (1)
CC-I) )-%F j

:-aso (a)

(k: * . - ]4r(rb •ilv)[r.-l - x

r • A

, , - %l . . ?--r )). r) F,

Im.



3""0/2 W

.(cel/2(c-l) 2tR*?)Jl+X (c+1)2(R+r)..leK$1*) jaI ((C1lc("1t

to

case (bi

g- Aa+~ 2 tC1) Ix(Cnl)Vx 3),+4a b jB~b2 )tC1.(C-1) IK

X() A NQ+ mob
x 1(C)(+)F *(C..1) (CdI) F ]+ Z !Lhctr )(C4-)%x

r--O A

CF+ l(r- iSR r)+X c(.&l)?(Rr))%kF()icj (B3.15)

to

case (a)

.l 1 00 ý

r=O A

&.

e-V2 r.) 1 d
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(5) .r6 ) 1/C2(C1)2Rr-~
eCc 1ý(C*1I)1log( r%1)F jj~

(Cfl(F~ dUac (B, 16)

cSS$se (b)

9 ' Aa3 *B3 R)~' 1) 3/r.1)'4'F.5)

14k (5) 00 xC6~ b
x((+I) tog(C~l)F +(C-1,) (C+1) F I+ Z~ r-2-(C-1)x

co

r 4 cI)C~ F fl(1

Part I I . ljq~Jjlj~r Lcflt~j

10 .hal!I now 1 ytetm:2r mtiindrvd

in ; -trt I ttA rre '2lx 1ithi S ;¶tI -r,:? p rt11

r''~ .5 ~ r'U~t tnct~r o ~at C0

:Tcto %zl a: I n A p erillr A x e A n~ wŽ 4a to e
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apparing in ga which do not have the required j order be-

havior demanded by -the boundary condition can be written in

the form

a K(2)

A E&r~h alo (5.19)and

where 1)(2)- (0) 9 0 is the Coefficient of C-1 in the series
r

developaont -.bout 0 0 of the Integrand of the integr:.l in
Y'•rinvolving, F"0) andl a(rl) is the constant contribution f~rom

th. •-'wer L-.it of integrjt1on of the inteiral in K i+r involv-
U1)

ing F in the inteorand.

7½sz in ,orler to satisfy the '.oundury cu.-lition we
mu:t 'o .,a'.o th.s -2e2ficle .tz of .a' KI) log 10 in (B.12)

an12 (-P, t) to :ero, tthis c:hjirjnrn t-jo linear iorugnc: 4 us "qurk-

t0 ns 1. the w n 3Da a 2.

A9

•+ iin

In 1.'a:>.t (E. IC) t~r h e .t.i.t- t-t as "..
r 'm.e c ; 2"•-;tnt:cy 5)" ;-. -;:, vtig-: the L..r-,',.r'/ c~n'ltt-n

± tntt :'i y, tx n t- i tn-' ttse [Irt i2-lflr :- r ,te•.. ._: 1 w,: n,•t-i'- th~a, if

- .- • r ) - 9 - 1

, .- • r~a fr c:;•t':,t• r fr #&:ich Et'• A• C thg'r trwJ te=rm in
"'r,.*. ~.. -k g• iiI:. the N•'4t 4xcpr*:-),7t b&1av9#S ::ke,.
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(C + e),2(R+r ) SlA

Thus in order to satisfy the boundary condition, the following

inequalities must hold

Xknot real: 2 R- ~ l r

X real: 2R + X < 1 - 2rmax.

J.ol can readily show that I is a lower bound for rmax, for, if

r "I = 0, then we would have Ea as the only term aipearing inMax 0
the summation, Bhut from (B[.19) we would then have Eoa 0 as

the only solution, This is not possible sincs the index H is

chosen such that Ea is the first non-zero Ea. ;(ence our in-0

equalities now become

X not real: 2H + RI {xc -<

(B. 20)
X real: 211 + X <- 1.

-4Q can dijcard the possibility

- 2 (R * r - = - i

since the bou:rlary r-nni1tioa woul 1hen dona,.xl Ea 2maX
which c-ntrat!t-t:. the t,:'It.on tr,_,

C - - -I

nlt. -:to;lti noto th-it In r vtng th bV 71,aPy M'rn-

d:tl- at :ai

(9,-
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had to be zero as I-- * 1. However, since the point C 1 is

a regular singular point of the differential equation, one can

readily demtonstrate that these conditions are redundant and

only one need be applied.

in order to satlzly this boundary condition we must

show that in the neighborhood of C = I the expression (B,8)

for ga(C) consists of terms which go to zero as C---ku or that

any terms which do not zo to zero have a coefficient which Is

identically !ero.

Raning the solut on R we find that as C-J the

term in the c)mp]•rientary sol'it on with least expoaent behaves

like I) - 1)", while the to't with least exponent in the parti-

cular integral beMhaves either like (C - 1) or like ( 1- 1)

depnnding upon which of the lollowing applies

()2R +2 < at$

() 21 + 2 = Rh X (B.21)

(I4i) 2i * 2 > kd rIt %- F

.o -ote that- the tur:. Lehavinc like (C - 1) 2H12 is ob-

taintA -or r z 0,

It ,-.Ž....t•,, (n of " (2.J 4 ,Ut tA, turm with

I n.ntt iS (7- -! >1 ? hl t. C:. be rrnwn to have

a ;mtroct Ict~t an 2 t:.cn "rt. e C o> satisfy the h "nd-

'-~~~ 4&56
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!!ence (B.21) case (M) gives

If coadittion (ii) of (5.21) applies and X is not real
.2R.2 -. \

the terns (r - 1) and (C - 1) have different behaviors

as -- 1 and rir b.iundary con lit ton :till demarlds that either

the coe"rickeo1t of (C - 1.)2R*2 ecuals zero Th_-ch we have seen

to be imposslble, or that

2A& 2 > 0

froma which R C, 1, 2, .*.. :!.ence (U.21) c-azo (i) gives

The posstibllity of k real fil 21i +) 2- -X must also be con-

sidered. ZXa..Ining (b. 8) we 7-rId th.iWt the ex;:onent

2(h + r) + 1 + K =- I

fo-Dr r t 71I- wi-I t:c r:su to ia torm In the ;4articall-r

[trz¼'r.-l LCedVIW I 1ko (( - 1) ' iF (< - I) anrd hwving a --on-

- rr ent. -. ,- udr. .ry cn-lntiorn wil 1 thn-% dvmand that

S, c< 0.
L

n" 1" "l( ')y• .. ' ) - ° i

st 511j Ci, ! ....
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a.t (x o

or if :,e make the coetriciont of this term equal to !ero. In

the latter case we must satlsfy a linear honogeneous relation

in ra :," 7ben, eexamining tho remaining tzrns, we find

torm's behiving 1 tke

(C_ l)L-, )l- 2R+2, (• - I log ( 1- ) ancd 1)-

Bit the inequal ity fro.xnd 'rom the botudary condition at C = - I

shows that
2R + 2 < 1 - fit X

Thus, agean, the b)tairary condition demands that

211 -+ 2 > 0)

from wh I ch
1i M , I, 2 , SIP a

.ow fr-rm (B.,-() we lind

X not rt-a1 atx saj
t;2

(2; Svyz-etsc U r .t.r"Z.

-:o_ (a)

. •,- .'•- - ..niol i n •t r - C. ir.,n q 2 :-

t ,j *.--.r'¼, ' = nr i • )] - ~ -. , ( *,;.-.
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the Zollowing Inequalities hold

aj a Q 1 2riQ 1 for X not real

(B.23)
2H' < 1 - 2raax for ) real.

At = 1 we must examine three possible cases

(1) 2R + 1 < R -

(il) 2R + 1 R-i - (B.2')

(iII) 2A + 1 > R4 - \

case (i) the boundary conlition demands

2R + 1 > 0

which tIveS
R = O, 1, 2, ... I

and we "ind, from the Ineoiiality (i) of (B.24),

cAse (11) with n iot real we ax-."n -ust zt

2R4 1>0

a j ( 1, 21, .

ani th ,Lja~ I 11 ot f :t?.) sh thint

*41. ~r a~l wand Rtt*1 -IE ?n! utndIfa

r-tn-gtro ecefr7±ce:;t h-*ln Mk"
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(C - 1) log (- 1)

and the bounda.y condition can .5e satisfied only if

case (iii) here we can satisfy the nouniary condition if

we raake

which implies aR{X \ < 0,

or we may not r,?strict X as yet, but insist that the cooffli-

4 -cient of terms behaving like ( 1 - 1) be zero. In the latter

case we must examine the remaining turms which behave like

(-1(-I) 1og(C-I) and ( 1-i)2R

flOw itf 2it + I < 1 - , aInd since the t,.rms behaving like

(C - l 1) hIv-. a nn-7.ero QMefICl~nt 1 thi boundary condition

domar4! that
zR 5 1 2,

•:•.•:•.• ~ ~ ~ ~ - _, ill -. Its' t _-.lay •rl-on hr' tnm, -nd~n tw~t
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I - atfI >0.

We now must satisfy three inequalities simultaneously. They

are

2- 1t {x > o
2R R 1 < I. - 2r~x

L 2max

If we ext4n09, for rmax = 0, the possible values of R and

Rd Ix I which will satisfy all three inequalitties we rind that

the onily permiible values of R are t = 1, 1, 2, 3,

For it 0 we :an show

O <M < i;

fr 1 , 39 e

11 -> I- we ,-.Iht -till satizfy the

-t-nrar;( conviltion without restrict!,!! X by se.tttng the cotf-

ficlents of terms tehairx, le (lk e', C 1 log(C - 1)

o ...iL .*er:. :, iZ - i •. rise to tw, -)r'e 1 irvoir 8on.gcltous

eu'n-rn In ~A, 1ý B5 .,'Ith r -0 we nmld zow have to

satl.fy a total zf !"ur l'w-:r, '.'t3 (.ITO i riB in only

t 1 2 .i.. r -z n tt-t .-a. ý,r i•n whlch the

cw rf- s o : .a k-ina i nt.s - s- lkc y that wo are

tj2r1.L tv Ltt:W n > .;a t. A!:)n t nr, ts w.u n! bi - f..tc'lt).

!inCfu L3 An-~' t r'n-tt~ rIi tuL -ii'r A
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the inequialities at epi:,atlon (C3.2') and we find no VL~urthor

rertuflýation~s with at.ý x Of

ca~se (b) the application of the boundrary conditions to

the -yrm~etric and anti-srrt-.,tric solutions of case (b) result

FIn ri~ations or the some nature as floand ror case (a). We

T-hul-l not lnc~lide this- wo.-c here, buit shall 9cn11y state the

resilts. One claus not £irid any pc;rt%.urbQ&.ions tha-,t can satisfy

tho nun'~lnry conditionis with A>0.f
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Firdte Jet L=pInging on Finite Plate

Part L _2jrj1atlln of boundary corditions

1) about C = O.

We have already seen that the solutions about • = 0

must satisfy the follwing bozdary conditions

gs is a regular fuiction of C at C 0

1-/2 a is a regular function of cat 0 .o.

2) At the dgEcs of the plate C = - 1,

We demand that the perturbations of the free surface

ei = O, i.e., that the free surfaco continue to originate at

the cdgo of the pinto, Frrnn (2.10) we nust hnve

Z 1 w- , fix - - = 0 o t C- -a.

Substituting in the ubý->vc we have

2-

2Cc G e. 4Gic 1 -:k4C) at t I
1c 2C

-- 4 !tr

4Th $ _ v.ffe-e't _f>t. tJr
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I0 + at

for all time t. This implies

0 C(-1) =0 2t(-1) :0o

Substituting for G1 and G. from (6.9) we find

(-0.(-i) .

3) Upstream infinity 1 = 1.

(a) The velocity perturbation w2 must vanish there, ioe.,

iim w2 = 0.

But
2

Substituting we have

C 1 (2 l) (Cb) (z0E)1C----1 Q(Cb)(C-b)-(C-l)[((Cb)(C-b)]}' f2C -

which will be natisfled if

lia (C - 100Cl = !Urn (C - : 2
C -- 4 1- -)I

Trom (6.9) we fLnd
S

!mr (C e l)g• 0 .

(b) p1w ;r2Žs:are m.rturhatton 2 rust vLish. We can

sit..attfy thts 3~la -rr-1 tý by Ir I.;jjg, that

re n
H ils>'"
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This will, be satisfied if

Urn Gl(C) = im G?(C) 0.

UJsing (6.9) we find

5
I im g a =

4t) Dow,,nstrrý,ar iaýi:iity C = b and C
'do -Wfaand that the Qsymptittc bu~havior of the jets

leaving~ the eýdrus of1 the plate be that of str~aight jet--. This

implie:s that an ob.-crver znvtnr, with thqu asymptotic jet veloc-

Ifly Scý z: no Change In w P. roceeliieg -is in zwetiofl5 IV and V

o~ur 'borAndsry ýondittion then C',,_mands that

(t-) (Cb) G) I (C-b) + (-b) 0 2C =-

and

2t

(C1 -tc ifm -m~g

x!tat h -~pc~Qy

ýart 1!. jy jW < ''>Jj¶n of thu V~rLatu

I, -tur vi- q ---- i--t'; on- ($

w r-. r rr
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L +g !b)2Z
K+ K + 2X 2 2%X 4+X2

C(-1 C (Ce-b Cb) (C.,i)2 b1

* X.- + - o - -

L(Ci)o 2rCb CCb

whereu g and h deaote-cither synretric or anti-symmetric quan-

tities.

Equation (V.i) Is a second order ordiinory differen-

tial equatinn of Fuchsian type. It ha.; regular singular points

at C = O, It b, and ý in the finite plane and has oo as a

regular si.wliar ;x.dnt. After putting (6.!) Into standard form

(see [7 pp. 151,' t suq. 1)) we can finl the ex oncnts of the

31nil-rxti.-C in the 7ir1te r.iane

k, % .t &Jx
a-.- - 2K 3 I I - 2k rtt ( I

Af e -tz • % !r.-1¶••. '. -

'~ fw -~' ~ 'a *--. ~ (r-T)
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we have the Oollmoing regular singularities and exponents in

tho finite plane for the differential equation governing H

o, * at = 0

O, 1 at C = 1

0, 1 at = b

O, 1 at = b.

5o11-iQma or !Io c2 Equati

Xr.owing the p'tsttvcn of the singular points and the

expoanit' of the cIngu1,lrities, we can writrs the complementary

sol.titons of the differentta_ equation for IL. Then applyIng

thu trarzstarmatlon above we can find t1he cnmplu;mentary solutions

for" g de:-toted by KM

(1) i/i'• -'2\ - )k .,•l)
K = (Cl (C-b) (C-ýb)

(C.3)
SC(-!) (•- b) (. F()

• .er.F(l) "F(2)

ar. F arv' 7t."i] -0 'r a3 1 :,'rn-zcro it C 0.

16 F

A - A y-I.

- S A - * ,
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where = constant and F(3) and F(4) are regular anrd non-zero

at C = I* We also know that the following linear homogeneous

relations with constant coefficients holds

(2) (3) N) ( )

S =a 2K (3 b 2 K

about C b

Kj') (t-1) (-2• b) *(C-•)Y(5
2% X'(5)

K : c6-1))(C,-b)k(C,-b) log (C-b) F'

( r-l-\ (C-b)t -)k(6) (C.6)

w.tore c, : constn:'It ar.I FM an- F(6) are regular awil i-n-zero

at ( . In a!P1 tiew. we :r!:y wr! te

a+ b wh,.v, e 1 - b = .,

'k~C 1-- 7)7-(' =÷(7; ) 7)

.t -- t'.- (C¢-b) (~-b) F ; t:•

r. xnr - r

(C I)( (C )

a .. ., eO !..ve• lx ,• •, .)
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FJI) = 5 m Vv)+b f hero a 5b6. a b a6 z; 6 a

+.(2) = a6Y(7) 4 b6 K(8) (C.9)

si•ýa_.L "_=.i. The potnt t - 1 is an ordinary point of the

dif'ero.,tial equation (C1). As a consequence, ve may choose

as two linear independent complementary soluttons K(9) and

K(-l) snch that
K(9(1) = 10)(1

K ' -)=Ký (-1) =-0

(9) (0iK9)(-1) = K lO(-1) 1 .

;:oreover wo may wr-ite

K() T(9) "I10)
7 K b 7K ) where ab 8 a b7 a8 = 6 4 t 0

P•) ..())toK b;,a + K

P'•'"•~ ~ r'. t-!~ -f i rt_ b, k•O Fo-j!! E .or

In --rder ti wr:tv the co-,;lete Ly:¶n.'•trIc or azti-

r -ktrtc 5!-, ,i .s ft ...turb.w It "rl , (C0 1) we must

rtnl :., p rtl-fl~ar int.-rai.. The v�irttcular intugral can be

r.iril 1-;sin,- ,'., -c tYnd rV an-! --- -- ,?a S.tv!. • I s !M YVu

h. ,. r-,r• ,- ) '<-,) ] c

c w- r c )

*1+
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(1) A--.ti-rr*metric solutions

Thc com.plete anti-syretric solution is

a . (aKM) K (2) •oo Ea (Cor (12)
9R ^R + ; 'Mr:O r RN+r

where A a a and Ea are unknown constants arnd. the term Ea 4 +r
R' BR r

is the solution for a particular integral of (C.1) when h(C)

is replaced by

CC 2 R+r

-Rr 1 2 Lcc- b)(C- E

MakIng the appropriate substitutions in (C. i2) we haWve

a al/( (1) -( - (2)

H =, A•cir (C-b) CC-b)4TF{•CJ2() (Ca1)-brAA

X r - -- --

(((-i) -C((-,) ŽC(Q-b)

"~ 1/2' l""(•b (C-b)
(V• ?(4)r) -

(: -,t
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H I R 2 zil1R 2

.1-2X -()cb

aJ

'~AA

2Zt(C-b) 2CC.;

(C-)lg~rI)(3)F(4) 
C-)2(~r+e-2)

~ ~ *'

~~ b (C.w-L 
-1 (0

b~ J x
4 *-~ ~ l'.~ - ~j3

r r -1~Flo
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.~cc6(C-b)1og(C-b)F(5)4F(6)]f(Ctu1)2( - +12 (C'b)ý Rr+-

x(C~h(R~r)-XF(5) [.LeLeenn ldC) (C.e15)
(i) 25C(C-b) 2C(C-Xb) j.

-ax(q)( a.b) XgC-b)? (?) (-2

co E, b -2k x X (7 [(-)2(R+r)+i+\

roA

z(Cb)~(+r~x(~b ~H~)+i KV (C )F(7) ~ (R~r)+i+2X

x (Ca.b) (nir)X%(C)" (. )\hU]L
C(C-1) 2C(C-b) 21CC-b)

(5 (- l2(R~r)4l+2X(Cb (R+r)e - X

~61,

2C(C-b 2C(C-) Ir c.6

"4 7 rz
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I~ dt -K (10 )1(, ,2(H~r).1 44X(C-b )n(R+r)-2X

ZC(rwb - (C1)d C.7

(2) &rznetric sc'Iuttnns

tA'c.? 1e~'sy'c~ticsolutiý,n is

w~ 2Y(I B!(2 + > 3 ;tKY(Cl

r=O

w'i(!-e B and E!~ a!re uztn.own constants --cLd x, 44.. isa the

soluit' -n for a ptirticsular integr:-A of (C.1) when h(C) is re-

irJJr

'cC -b)(( - U)J

Su bzt t t Inr In (I18 we hav

ab at ,/ 2kL,...

r F1?

r A

X 66 C

-~r -ktt 'A.~J'(C-h I
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9R=(A~a Ii.4,a 2)[(Ce1)l (Cab)X(Cb)V(3)]+(A~sbl+B~b2 ) X

* ~ Cb rb )fi lgC'F(3)4 ) 112 (--b

OD 1/2

2C(C-b) 2C(C-b).) +c

-1/
IC r -1)-(g ) +FM

(y\ -b -'(2

- CC

a bo -.1 t. U

:'- A, F~~'C~. -J

A.
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C( -1 2C (Ce-b) 2t ~ 6 (e ogC

x-dr (C.21)
C(C-1) 2C (C-b) 2tC(C-:b)

a a "CI-2X (C-b) X(c-) xF ()(Ab. b) x

eax.~~~~6 x1 .+ - ()'2

x'8C1 C-.b) %C-b) log(Ce7b)F (7 (C-1) (Cc-b)X(C-b)? )

4( -I ýt 46b a x (c- h M*)x i( -b F W tc8 /
A ko 1

2(R~r) +2 X Rr- Rr+ k(7

M+042% (C-b) (8

*C(!-1)(-)(-) F x

x -b -i;, (r.

((') 2nCiC-b) 2,,eCr4)

r(A*) ZM

(r b)( -

X
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9 (A a .~ 8 K .9+(4 +b4% 8)K (10 ). + rŽ 1
R A~7*Ba~ A7 Hr=Q AL Ay
XC 1/2!•(C.-) 2 (R+r)4-X(Cbl)c ÷r)42X( )k (R+r)e2k(1O)

(1) 11/2( -I)2(R+r)44X.

t(C-l) 2C(C-b) 2((Ceb)

- e(R)r-ak (9) '
x(C.h)(Cob) K(•WW.• ( ... - .---. --- 1--]dr(C-1) 2((-b) 2C(C.-b)

(C.23)

Part III. of ilcat .Lp.ndarv_ C2.1tL%,ns

We shall now apply the boundary conditions to the

complete syt.etric and anti-symmetric solutions of the pertur-

bation equat-'on, Since the method of attack is quite slaiLar

to that of prevtous sections, some alge.1raic detail will be

rmitti)d.

(I) k6.t I- s.ti :,.rtr1c solntions

g•-1) r O

a
't. . g a!)o-t - -it Is ,-'atjaon (C,17).

*e ~not *the p,- .der~vat~tg it rarticuiar Inte'ra! is zero

at C - 1 and herc6 wo ecars 3r,3' y the blccary• conAti--:n if

,A a - sag ] .(c.24)L~7



35*7/2 129

LaL 0 C t g(a) is a regular function of C as C-->)O.
The .zIut on P, valid near = i ts equation (C.13).

4e can satisfy the boundary condition by equal to zero

thf, coef ii ents of the terms in gR that do aot posz-ess the

behavior required by the boundary condition. This gives

R A r=o r r

ZA Ea Dý (o)] = 0 (c.26)
TO r r

(I) i r'C2)(
where ar and Dr" (0) have been defined previously.

a• z kmi. _im (C-b) )'g a (C) and lim~t (C-b)- \ga(C)

CC -4b b

exist, I.e., av'c finite,

An I� p:ttc_; C' the ,j-uatsrns (C.15) argi (C.I() shows

that (C.15,) Is the same funztion )f b. as (C.iL) is of b and

henct., we get th_- sa, e Iaf!%r-nat-on frorm both V-undary igontl tions.

We shall ap;l:",.y *f I the b''ur.-i." ccn'ItI~r at C b.

.he ?rm ;r tn'Ž zDn; .Lc... tary l on s:atIsfy the

b.c!n>y '&n•A1t n tvItcz .l y. If we ie~2-i.a that the toxpo.-

nwnt -f the tirzo -nu (C-b) g arI cr fror th,! .arti:ular

.. -t.a .a -A ip at

fl - 'I f;
-o xt:~~. .x'7t :a¾

czcVa ;r ;r >.c <.n:!cr r, * t:r

MAX
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now give Ra+atfxý s<o0 or x not real

(C. 27)
ft. X •0 Vor.X real.

tW Aa
g () = 0.

As i- the preceding ;reb , we note that C = I is

a regular sltavlar point of the differential equation and we

ned apply only one of the two boundary conditions derived in

part I of this Appendix since the other will then be sat.sfied.

In or-ler to satisfy this boundary condition we must

snow that in the neighborho-d of C = 1 the exproszion (C.11)

for 4a(C) consists of terms which go to, zero as (-- i. 'r that

any tr-rms 'Ah'ch do not go to zero have a c;efflclent which is

identically zero.

Thu term with least ,x;ont in thu cctpl a.m"dtary

solut!,on behaves like (C-1) while the tcrm frr-m the par-ticu-

1ar :integral with loa..t expo:aent *(!havus like (C-i)"2k C.r

d *-.nilng upon w".ch or tth• roliwing a-,[lios

(t'•) 2?P " -2 )'
('I) 4 *2 RiF -(C.28)

"- j 20L

Caso (•: tt'f--ia.y ;n:vit" n A.c¶.1I 2U * 2 > r

(:vi n: h : IR 2, *.. ;-a thi. Ld41:ty shows Rft - 1.

Cau, (1"): Ccr \ rstt zceal "-_ zw!- :u:t havu
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2R.÷2 >0

g~lvig t, fx I £ 0

If K is real we fIn there will be terms in the par-

ticular integral like (t-l)2 log (C-I) Waving a non-zero

coefftclent. Our tou.dary condition then demands

rI. { CC.

Caso (iii): in t;As case we can satisfy the bou;n~ry

cnId Itut>n by -,v-:Ing
at >). a

Or we m:ty not resrtr!ct \, but set tj,,c cweffileent of terms

behavlng 11k," '! : equal 'o zor--.'e -i-t thou examine

the r,*::.i~ntrg torjr't -'U h.c hav,,o ... 4•: e

((it) , *:)ld (.g U>), ( .UP+

V .:ov R • 2 - 4S. - ', O , e till -ust ha-o

a " I

/- . • < -

-J 1

":, :-' 'o "r " - ?%4 2)" r' w-e Inrit• that

C... . . . .... . . . . -- . . . . . . . . - ? .t~.v f f A
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From these and the fact that Rt Is an Integer we frInd R4, XK ISý
for all possible values or R and.

4gain, however, we may satisfy the boundary condition
1,-2 \

by setting the coefficient of terms like (C-1) and
l-2X

(C-I) log (C-1) equal to zero. These give rise to two
linear homogeneous relations in Aa, Bi and Ea. We now find

r
that if we asz-,uze rmax z I we are forced to satisfy more equa-

a a•
tions than the nrU-.ber of unknowns asswmed up to now (A., BR*

Eg, Ea). Fron the :am-oer in which the equations arose9 they

votAJ a- ;.ear z.. e indep-.nrient. Heace this 'would make r maxz> >

(in -rder t: :..z - .rc tIe extstence of a n-n-:rivlal solution).

If rm.aX iS at 1..t a_ yr at az 2, the irin_'ality (C.27) is

strcrrh'.... , .. .. IIni that we can n,• !--nrf.r h ve

2h + :1 4 (2)X

Ee:ice -.4 -,: 4chwde t:ere are no antt-sy:•ý.etrlc pertuarbations

with P•1% 1'> C,

(2) Syrm-etric s-.tut ins.

-li Z. r 4. e - -1 , .... ("App y Y Ing

itv c'<n(,C) ", ah r"-r:•':.-yr !_,;rir -, •t 2f .a3 - bg

t_____ ary n~ n

r- .~'.~)' :Jta
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r A, + El 0. (C. 30)

i1m (P'-b Ag and ilcL. ex.ASstS -÷ b - ,b
i. e.,9 are Cln4te

Aup.y'hg this binadary condit' in at C = b to g• given

by (C.?1) we find we mtast satisfy the 5'llo •wlng inequalities

R f - rXz X not real

(C. l)
x < I rmax X real.

At tnrs paint In our development the largest lower

baund we can as,-are for r ax is zero,

at 0a

g, valid near S 1 is (CU. O).

in this case, corresp;ondiraj to the situati'% n we

ftuid in the anti-syzestric case, we must exFE-nie the relative

sizu itf the exponents

The ;)71 ct a Z,. s are

(.) + I < R

(°81) ;-• 1 > 21, U••
"R . (C t"

S :Ri

h-P ~ ~ ~ ~ -v r II '

VO .. tCiA
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2R+ > 0

which gives
R = 0, I, 2,

Then 1i1,- Ine;uallty (C.32) case (W shows

Case (1i): for k not real ye must still make 2R * 1 > 0

ahich now i:plle?

For X real. Io find terms In the raort!cular Integral

having r.on-ze:, coefftctents behav:ng like (C-l)e21og(C-l)

arn v,: bi'dary conlittcn wr':Id make

R4 *. •< 0.

CAe (ill): the boundary cnnJnitn can be satisfted

etthe" (a) by nakxtn. R; - 0> .Ihich 1.21"3 ;t 4 0 C S
- J . J#

ir ( r, t-y s c'irg ouzU1 tc t--.-. the cof ric ensts of terms be-
-3 x

ha%1.Z 1:ke * (b) 1: we -wust gc. on and '•xamlne

ter.•mik,2

:r -;w 21 FR 1. < I - X We =13st have 0 t i I > 0

v ~ ~ ~ r. n4; 0~ %- n1c

ty I
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If we satisfy the boundary condItion by making I - Rt{2X} > 0

Ve have to satlsfy thres tneqqualittes simultaneously, namely

2R + 111- RL {2X}

R RL{7J Li'a 1-r

If one asumes r mx 0 there appears to be a possible
choice ot S such that Rt (>4> O. But withr vetn

we must satisfy three lliear homogeneous equations in the three

unknowns AR, B3 and Es. This would require that for a won-

trivial solution, i.e., A, Bf and 0A not a!l zero, the dt'tur-

Ain.ant of the coefficients of the unknowns muzt be zero. This

would not appear to be a ltkely possibility, although we are

not in a posit:cn to evaluate the coefticicuts in closed form

in order to show this mo-thematically, Asstunlng the determina-it

not Rero we rtxvo to mi.,e rax at !cast as gr#M&t as 1, and In

stich a case wu find thcre arc no possibli~tcS of satisfying

-,Mr tho u ilU4q tZI5tý.3 wdith at {X} > a.

The r1.nairlnc posslbtlity is that we :st'Lsfy the

btJr-ary' con2t-tmn not be decandrng 1 - RS j2X 4 > 0, but by

scttt.nc •q'i•l tb !cr3 thu pcttftrt.-ltr of t':rrms bchaving like

an. (- .-- !w ,!via wdthut thO argi.wm.wrt

r--tý-ýyc .O !aonw r.*-IX is tt. I,- !st as larg- .s 3 ar=4 thIs woultd

:tru.thic *W Vr-4i~ty ol (0.31) n az t¢ ;r,rcve thu pos:i-

b!:lty of -th r casAe (1!) or case (Ili) ot (C.?32) btirn ajpli-

C t 1~r 4-i• ,; I~n w. :.. rio La• i 'ic s: A-."ln ý,rC .th

>
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